
 

 

 

 

 

D2.3.2 DEPLOYED PRESERVATION 

SERVICES 

Advanced Search Services and Enhanced 

Technological Solutions for the European Digital 

Library 
 

 

 

 

 

Grant Agreement Number: 250527 

Funding schema: Best Practice Network 

 

 

Deliverable D2.3.2  WP2.3 

 

 

 

 

Prototype 

v1.0 – March 29, 2012 

Document. ref.: ASSETS.D2.3.2.ENG.WP2.3.V1.0 

 



 

ASSETS Deployed Preservation Services    D2.3.2 V1.0 

 

 

Programme Name: ....................... ICT PSP 

Project Number: ............................ 250527 

Project Title: .................................. ASSETS 

Partners: ........................................ Coordinator: ENG (IT) 

Contractors:  

Document Number: ...................... D2.3.2 

Work-Package:............................... 2.3 

Deliverable Type: .......................... report 

Contractual Date of Delivery: ...... January 30th 2012 

Actual Date of Delivery: ............... March 29
th

 2012 

Title of Document: ........................ Deployed Preservation Services 

Author(s): ...................................... LB – Luigi Briguglio (ENG) 

..................................................... MN – Massimiliano Nigrelli (ENG) 

..................................................... SG – Sergiu Gordea (AIT) 

..................................................... RG – Roman Graf (AIT) 

..................................................... AL – Andrew Lidley (AIT) 

 

Approval of this report ................. APPROVED – Luigi Briguglio (ENG) 

 

Summary of this report: ................ see Executive Summary 

 

History: .......................................... see Change History 

 

Keyword List: ................................ ASSETS, Digital Preservation, OAIS, 

Preservation Planning, Risk Management, 

Normalization, Notification 

 

Availability ..................................... This report is: 

X public 

 

 

Change HistoryChange HistoryChange HistoryChange History    
Version Date Status Author (Partner) Description 

0.1 13-december-

2011 

Draft LB (ENG) 

 

Gathering first 

contributions from 

ASSETS wiki on the 

agreed template 

0.2 15-december-

2011 

Draft MN (ENG) Added “Business 

scenarios for 

Preservation 

Notification” 

0.3 06-february-

2012 

Draft AL (AIT) 

 

Normalization update 

0.5 14-february- Draft MN (ENG) Revised Service APIs 



 

ASSETS Deployed Preservation Services    D2.3.2 V1.0 

 

2012 and User/Developer 

manual sections. 

0.6 23-february- 

2012 

Draft RG(AIT) Revised Risk 

Management Service 

sections. 

0.7 27-february- 

2012 

Draft MN(ENG) Re-organized contents 

in three main sections 

(one for each task of the 

WP 2.3). 

0.9 28-february- 

2012 

Draft MN(ENG) Peer review 

0.10 1-March-2012 Draft RG (AIT) Peer review 

0.11 5-March-2012 Draft AL (AIT) Peer review 

0.12 5-March-2012 Draft RG (AIT) Peer review and 

updates 

0.13 15.March-2012 Draft MN (ENG) Revision based on 

feedback 

0.14 23-March-2012 Pre-

Final 

SG (AIT) Final review 

1.0 29-March-2012 Final LB (ENG) Approval and Release 

 

 



 

ASSETS Deployed Preservation Services D2.3.2 V1.0 

Table of Contents 

1. INTRODUCTION 2 

1.1 THE ASSETS APPROACH AND PROPOSAL 2 

2. T2.3.1 RISK MANAGEMENT 6 

2.1 INTRODUCTION 6 
2.2 BUSINESS SCENARIOS FOR RISK MANAGEMENT 6 
2.3 TECHNICAL DOCUMENTATION FOR RISK MANAGEMENT 9 

2.3.1 UML diagrams 9 
2.3.2 REST services 13 
2.3.3 Risk Management: Client APIs 17 
2.3.4 Software packaging 20 
2.3.5 Installation and configuration 20 

2.4 USER/DEVELOPER MANUAL FOR RISK MANAGEMENT 21 
2.4.1 USER MANUAL (how to use risk management service home pages index.html 

and admin.html) 21 
2.4.2 DEVELOPER MANUAL 22 

3. T2.3.2 PRESERVATION NORMALIZATION 25 

3.1 INTRODUCTION 25 
3.2 BUSINESS SCENARIOS FOR NORMALIZATION 25 
3.3 TECHNICAL DOCUMENTATION FOR NORMALIZATION 26 

3.3.1 UML diagrams 26 
3.3.2 Web services 33 
3.3.3 Software packaging 42 
3.3.4 Installation and configuration 44 

3.4 USER/DEVELOPER MANUAL FOR NORMALIZATION 44 

4. T2.3.2 PRESERVATION NOTIFICATION 57 

4.1 INTRODUCTION 57 
4.2 BUSINESS SCENARIOS FOR NOTIFICATION 57 
4.3 TECHNICAL DOCUMENTATION FOR NOTIFICATION 57 

4.3.1 UML diagrams 57 
4.3.2 REST services 58 
4.3.3 Preservation Notification : Client APIs 63 
4.3.4 Software packaging 69 
4.3.5 Installation and configuration 69 

4.4 USER/DEVELOPER MANUAL FOR NOTIFICATION 71 
4.4.1 USER MANUAL (how to use notification service home page, index.html) 71 
4.4.2 DEVELOPER MANUAL 72 

5. CONCLUDING REMARKS 76 

6. REFERENCES 77 

 

 

 



 

ASSETS Deployed Preservation Services D2.3.2 V1.0 

Table of Figures 

Figure 1 - The OAIS reference model ........................................................................................ 2 

Figure 2 - The ASSETS Digital Preservation Services ................................................................. 5 

Figure 3 - Risk Management Domain Objects (Scenario 1)..................................................... 10 

Figure 4 - Linked open data (LOD) domain objects (Scenario 2)............................................. 11 

Figure 5 - Risk Management interfaces: client side ................................................................ 12 

Figure 6 - Risk Management: server side ................................................................................ 13 

Figure 7 - Available risk mangement administration services required for scenario 2 to 

initialize and check database .................................................................................................. 14 

Figure 8 - Available risk management user services ............................................................... 15 

Figura 9 - Format Registry Concepts and Domain Object ....................................................... 28 

Figure 11 – Standard Data Exchange Objects ......................................................................... 30 

Figure 12 – Jasper Migration Service Sample ......................................................................... 31 

Figure 13 – OSGi Service Utilities ............................................................................................ 32 

Figure 14 – Service Framework Registration Approach.......................................................... 33 

Figure 15 - Preservation Notification: domain models ........................................................... 58 

Figure 16 - Preservation Notification: service interfaces........................................................ 58 

Figure 17 - Available notification services related to managing external services and 

taxonomies.............................................................................................................................. 59 

Figure 18 - Available notification services related to managing subscribers and subscriptions

................................................................................................................................................. 60 

Figure 19 - Available notification services related to managing publishers, creating 

notification channels and publishing messages...................................................................... 62 

Figure 20 - Available notification services related to managing the delivery of messages. ... 63 

 

 



 

ASSETS Deployed Preservation Services                                Page 1 D2.3.2 V1.0 

Executive Summary 

This report is the release note for the final prototypes of the Preservation Services suite (i.e. 

Risk Management, Normalization, Preservation Notification). 

The specification and the detailed uml models have been provided for the three services in 

the [D2.0.4] "The ASSETS APIs" for the first year of the project. 

During the second year of the ASSETS project, the steps of the development lifecycle (in 

particular integration and evaluation) allowed to refine prototypes by improving 

performances, usability, documentation and supported features. 

Consequently, this report describes both the final specification and the updated models of 

the deployed Preservation Services. 

This document provides detailed information on how to deploy, instantiate and use the 

services for supporting implementation of preservation scenarios. 

The document is available as a public document (license CCby-nc-sa). 



 

ASSETS Deployed Preservation Services                                Page 2 D2.3.2 V1.0 

1. Introduction 

This document aims at describing the final version of the Digital Preservation Services 

developed in the ASSETS project. 

 In the second year of the project we concentrated on finalising the implementation of the 

services and their evaluation. The improvement suggestions were collected during the 

evaluation phase for supporting further enhancement to the services features. 

In this perspective, this document represents the opportunity for synchronising and 

updating the documentation and specification for the ASSETS Digital Preservation services. 

The document is divided into three main parts that describe the three ASSETS  Digital 

Preservation services: 

• The Risk Management Service (T.2.3.1), 

• The Normalization Service (T.2.3.2), 

• The Notification Service (T.2.3.3). 

 

This document presents the technical aspects of the services such as the software 

requirements, the UML diagrams and the API documentation.Furthermore, it provides the 

technical documentation needed to install, configure and use the software artifacts that 

have been produced during the above mentioned three tasks. 

1.1 The ASSETS approach and proposal 

 

Figure 1 - The OAIS reference model 

 



 

ASSETS Deployed Preservation Services                                Page 3 D2.3.2 V1.0 

OAIS (Open Archival Information System) Reference Model (see Figure 1) is the ISO standard 

(14721:2003) adopted for addressing the digital preservation challanges. It identifies and 

defines a common framework in order to analyse and describe concepts and terminology 

for Digital Archives/Libraries. The major aim of OAIS Reference Model is to facilitate a much 

wider understanding of what is required to preserve information for the long term. In 

particular, OAIS has defined the following key models and guidelines: i) the information 

model, ii) the archive responsibilities, iii) functional model. 

The information model defines how the content information and its data object, primary 

focus of the long-term preservation, have to be described and packaged (i.e. 

Submission/Archival/Dissemination Information Package) within the digital archive/library.  

The following figures show the key concepts such as Information Package, Content 

Information, Data Object, Preservation Description Information and Representation 

Information. In principle, it is feasible to assert that the Preservation Description 

Information (PDI) provides the suitable information for enabling the long-term preservation 

(i.e. preservation metadata): it includes details about the “provenance” which deals with the 

history of creation, ownership, accesses and changes of the content. 

  

 

Another key concept is the Representation Information which allows the users of a 

Designated Community to interpret the Content Information and its Data Object. It includes 

two main type of information: the semantic representation and the structural 

representation. The latter deals with information such as the Data structure, Format, tools 

for accessing the information and data. 

The Information Package is managed by an OAIS Archive through 6 Functional Blocks: the 

Ingestion, the Access, the Administration, the Data Management, the Archival Storage and 

the Preservation Planning. OAIS clarifies which are the roles and responsibilities of those 

functional blocks, and in particular it remarks that it is important to: 

• Identify and characterise events which potentially impact the long-term usability and 

access to digital information - This deals with the evaluation of potential accessibility 

risks; 



 

ASSETS Deployed Preservation Services                                Page 4 D2.3.2 V1.0 

• Monitor occurring events which potentially impact the long-term usability and access to 

digital information; 

• Identify, characterise and evaluate relative corrective actions/plans for mitigating 

impacts (preservation plans) - This deals with the plans for reducing impacts of risks; 

• Communicate/notify impacting events and actions to the right actors involved in the 

preservation process - This deals with the notification/communication of risks to the 

actors who are responsible for taking the right decisions and enacting corrective actions; 

• Enact, monitor and control relative corrective actions - This deals with the 

enactment/reaction for mitigating impacts of risks; 

• Track, report and document occurring events/actions/changes within the digital archive, 

as evidence for judging/auditing/certifying the quality of “preservation archive” and the 

“authenticity/provenance/integrity" of archival objects - This deals with the reporting 

aspect, which is useful for tracking changes. 

OAIS “Preservation Planning and Administration” components provide the functionality 

described above, as shown in the following table. 

OAIS Responsibilities 

PLANNING ADMINISTRATION 

• Monitoring OAIS environment; 

• Detect changes/impacts in DCKB 

(Designated Community Knowledge 

Base); 

• Mapping out preservation Strategy; 

• Provide recommendations. 

• Manage submission agreements; 

• Audit submission; 

• Maintain configuration management; 

• Monitor archive operations; 

• Inventory archive content; 

• Report on archive content; 

• Migrate/update archive content; 

• Manage archive standards/policies. 

The ASSETS proposal for the digital preservation issue is to provide implementations of 

services whose functionalities are defined in the OAIS Preservation Planning and in the OAIS 

Administration components. In practice, the ASSETS Digital Preservation Services (see Figure 

2): 

• estimate data preservation risk through the Risk Management service 

• track and report/notify occurring events through the Notification service 

• enact preservation plans through the Normalisation service. 



 

ASSETS Deployed Preservation Services                                Page 5 D2.3.2 V1.0 

 

Figure 2 - The ASSETS Digital Preservation Services 



 

ASSETS Deployed Preservation Services                                Page 6 D2.3.2 V1.0 

2. T2.3.1 Risk Management  

2.1 Introduction  

The service aims at mitigating the risk of digital obsolescence by providing risk management 

reports to content providers, after performing an analysis of the contributed content.  

The service performs an inspection of the collection objects and a statistical analysis of the 

content formats in order to provide a categorization based on the preservation risk.  

The aims at providing a reliable identification of long term accessibility risks for the 

underlying data.  

This component addresses the topics of technology watch and enactment of 

(semi)automated preservation policies. It makes use of available preservation community 

resources such as technical registries (like PRONOM1) for policy extraction and the ASSETS 

Normalisation service for object identification and policy execution. 

The service addresses the following issues:  

• format obsolescence and limited support for proprietary formats;  

• pour technical documentation of digital collections;  

• automated collection profiling and recommendation of preservation actions. 

2.2 Business scenarios for Risk Management 

The Preservation Risk Management covers a very important role by providing metadata 

analysis and preservation risks estimation for Europeana collections. 

The objectives of the service are: 

• Evaluation of the Europeana collection metadata statistics. The metadata statistics are 

represented by parameters  availability of information in important fields, accessibility 

of links, item count. The URI links available in Europeana objects (i.e. 

“EuropeanaIsShownBy” or “EuropeanaIsShownAt”) should be examined for their 

accessibility. Retrieved metadata statistics could be aggregated in relevant preservation 

dimensions like provenance, context and accessibility. Based on the retrieved metadata 

statistics and generated preservation dimensions the service computes an aggregated 

preservation risk scores, identifying collections that could be in danger of not being 

prepared for supporting long term data accessibility. 

• Preservation risk estimation for selected Europeana collections. The preservation risk 

estimation is based on the analysis of the metadata collections in combination with the 

analysis of the file formats used for representing the media information. The system 

uses the external data repositories in order to evaluate the long term preservation 

compliance for a  particular file format. To get more information about linked open data 

(LOD) repositories, please use the following links: 

                                                             

1 http://www.nationalarchives.gov.uk/PRONOM/Default.aspx  



 

ASSETS Deployed Preservation Services                                Page 7 D2.3.2 V1.0 

� DBPedia: http://dbpedia.org  

� Freebase: http://www.freebase.com  

� Pronom: http://www.nationalarchives.gov.uk/PRONOM 

 

The following business scenarios were taken in account for specifying requirements for this 

component:  

1. Preservation risks evaluation for Europeana collections. The main idea of this 

scenario is to statistically analyse the quality of Europeana collection and to 

estimate preservation risks. The metadata fields of each Europeana object are 

examined to evaluate their complettness and/or correctness. The URI links included 

in metadata are checked for their accessibility. The collected information is stored 

into the Assets database. This data is used as basis for computation of risk scores 

and identification of possible risks for information loss. The metadata of the 

Europeana collection objects are statistically analysed; preservation risk scores are 

calculated from metadata statistics and aggregated preservation dimensions. The 

output of this scenario is a generated preservation risk report in HTML format. The 

steps performed for completing this scenario are presented in the following: 

• Ingestion of collection represented in ESE XML format (if not already done). This 

is required to provide access to the collection metadata through the rest 

interface. 

• Define configuration for metadata analysis. In this step it is possible to define 

which collection should be analysed (by id or collection name), which metadata 

fields are interesting for the metadata analysis and which  risk computation 

model should be applied.  The risk computation model defines the composition 

of the preservation dimensions and the threasholds indicating preservation 

risks. A default configuration file is provided with the component, and is 

recommended to be used for evaluating the metadata collections within the 

context of Assets project. 

• Perform statistical analysis on metadata fields. In this step we iterate over all 

Europeana objects in a given collection and collect statistical information. This 

data is stored in a database for further computations. 

• Compute quantification of metadata analysis results over different preservation 

dimensions. The preservation risk scores are computed over the preservation 

dimenstions like “Provenance”, “Context” and “Accessibility” by using the 

statisics generated in the previous step. 

• Compute overall preservation risk scores. The preservation risk scores are 

calculated by aggregating the scores for all preservation dimmensions. The risc 

scores are normalized within the range 0.0 to 1.0. The higher is the risk score 

value the higher is the preservation risk. For easier interpretation of the risk 

analysis results we quantify these results into  the preservation risk levels a: 

“Low” (green color), “Middle” (yellow color) and “High” (represented by red 

color. The thresholds for these levels are defined as follows: 0.5 between Low 

and Middle and 0.8 between Middle and High. The total risk score value and 

total risk level are calculated over all analysed dimensions. 

• Generate preservation risk report in HTML format. This report comprises 



 

ASSETS Deployed Preservation Services                                Page 8 D2.3.2 V1.0 

preservation risk scores and risk levels calculated for associated metadata 

statistics like “BrokenObjects” and preservation dimensions like “Accessibility”. 

It also contains Europeana collection analysis report with the collection id, the 

collection name, the count of broken links and missing fields, total broken 

objects and total analysed objects.  

2. Evaluating  software solutions available for enacting preservation plans. The main 

goal of this scenario is to retrieve rich information on file formats from LOD 

repositories. In this way a user is able to receive textual descriptions and meaningful 

information about software supporting the given file format and vendors that 

created this software. This kind of information is likely to support the creation of 

preservation plans as a result of the binary analysis performed with the help of the 

Normalization service. The basis of this scenario relies on rich data descriptions 

retrieved from Linked Open Data (LOD) repositories like DBPedia, Freebase, 

PRONOM etc. The LOD data is automatically harvested using the Wep access points 

provided by these repositories and the  supported query languages (e.g. like SPARQL 

or MQL). The collected information is processed, normalized and integrated into the 

service’s knowledge base. The Rest API of this service supports quering for textual 

descriptions of the file formats, software and vendors descriptionsThe actions to be 

taken for completing this scenario are the summarized in the followings: 

• Check  availability of the file format descriptions in the service database and 

retrieve data from LOD repositories if necessary.  

• Generate rich format descriptions. Aggregated reports on FileFormats, Software 

and Software Descriptions are generated as HTML tables or CSV files containing 

information like “FileFormatDescription”, “SoftwareName”, “RepositoryName”,  

“SoftwareHomepage”, “SoftwareDescription” etc. These reports also include: 

o References to LOD repository descriptions (PRONOM/DBPEDIA/FREEBASE). 

According to the LOD principles, each repository has its own mechanism for 

nonambiguous referentiation of the managed concepts. By having a 

reference in a correct format, a user is able to easily address the 

information from a web service. As example, the references for “pdf” file 

extension look like following:  

DBPedia –  Portable_Document_Format2 

 Freebase –  /en/portable_document_format3  

o  PRONOM – fmt/144 Software and Vendors supporting the given format. 

Here evaluated software and vendor objects are returned in HTML format. 

 

                                                             

2 http://dbpedia.org/resource/Portable_Document_Format 

3 http://www.freebase.com/view/en/portable_document_format 

4 http://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=613&strPageToDisplay=summary 



 

ASSETS Deployed Preservation Services                                Page 9 D2.3.2 V1.0 

2.3 Technical Documentation for Risk Management 

2.3.1 UML diagrams 

This service has been identified and preliminary described in [D2.0.4] as a provider of 

common functionality for the Preservation Riskmanagement Service (outcome of the Task 

2.3.1).  

The risk management service API consists of domain objects (Figure 3 and Figure 4) and 

server and client side APIs (Figure 5 and Figure 6).  

Risk management domain objects are logically separated in two groups associated with 

correspondent user evaluation scenario (see class diagrams in Figure 3 and Figure 4): risk 

management domain objects for scenario 1 and LOD domain objects for scenario 2. 

The CollectionAnalysisReport and MetadataAnalysisResult collections contain results of 

metadata analysis computation, whereas collection analysis report is an overview of 

metadata analysis result objects. 

Based on these results, further metadata statistics calculation is possible. These are: 

• Metadata analysis statistics (MetadataAnalysisStatistics, MetadataAnalysisStatistic, 

MetadataAnalysisValue). Metadata analysis staticstics describe a list of metadata 

analysis statistic objects. Each of these objects comprises Europeana collection name 

and ID, report name and metadata analysis value list. Metadata analysis value object is a 

main object of metadata analysis and describes different statistical fields like “Value”, 

“ValueCount”, “Percent”, “DistictValueCount”, “AllValuesCount”, “FillingLevel”, 

“EmptyFieldsCount”,  “TotalEmptyFieldsCount”, “TotalObjectFieldsCount”,  

“EuropeanaUri”, “Link” and “ErrorCode”. The meaning of these fields is self explanatory. 

• Preservation dimensions statistics (PreservationDimensions, PreservationDimension). 

Preservation dimensions are calculated based on metadata analysis statistics. These are 

“Provenance”, “Context” and “Accessibility”. The “Provenance” comprises such 

Europeana object fields as DcCreator, DcPublisher, DcContributor, DcCoverage, 

DcTermsProvenance, EuropeanaCountry, EuropeanaDataProvider, EuropeanaProvider, 

EuropeanaYear, DcTermsSpatial, DcTermsTemporal. The “Context” stands for such 

Europeana fields as DcDate, DcRelation, DcTermsIsPartOf, DcTermsCreated, 

DcTermsIssued, DcTermsIsVersionOf, DcTermsIsReplacedBy, DcTermsReplaces, 

DcTermsRequires, DcTermsHasPart, DcTermsIsReferencedBy, DcTermsReferences, 

DcTermsIsFormatOf, DcTermsHasFormat, DcTermsConformsTo, DcTermsHasVersion, 

DcTermsIsRequiredBy. The “Accessibility” contains DcType, DcFormat, DcLanguage, 

DcRights, EuropeanaObject, EuropeanaIsShownBy and EuropeanaIsShownAt. 

• Risk score report (OverallRiskScoreReport, RiskScoreReport). The risk score report 

conducts preservation dimensions evaluation and provides an HTML formatted 

response including a table of different preservation dimension fields with associated 

field filling level in percentage. This is a basis for the overall risk score report that 

comprises preservation risk scores and risk levels calculated for associated metadata 

statistics and preservation dimensions. It also contains Europeana collection analysis 

report with collection id, collection name, the count of broken links and missing fields, 

total broken objects and total analysed objects. 

The Figure 3 presents ASSETS domain objects used for the scenario 1 implementation. In 

this scenario metadata analysis values are filled out by statistical analysis of the selected 



 

ASSETS Deployed Preservation Services                                Page 10 D2.3.2 V1.0 

Europena collection. The computation is based on the collection analysis report stored in 

database that comprises metadata analysis result.  

A collection analysis report provides functionality for the generation of different statistical 

reports. To create a risk score report a list of preservation dimension objects can be 

evaluated based on data stored in database at metadata collection level. This enables the 

generation of the overall risk score report with risk scores and risk levels estimations. 

 

 

Figure 3 - Risk Management Domain Objects (Scenario 1) 

 

The linked open data (LOD) domain objects (see Figure 4) support storage, retrieval and 

analysis of information retrieved from LOD repositories.  

This structured information is a knowledge base to be used for deriving preservation 

recommendations. In Figure 4 ASSETS domain objects are depicted; these are an internal 

representation of the external data(see PronomFileFormat, FreebaseFileFormat and 



 

ASSETS Deployed Preservation Services                                Page 11 D2.3.2 V1.0 

DBPediaFileFormat classes). collections aggregate file formats from associated repositories.  

The LODFormat, LODSoftware and LODVendor objects store data retrieved from LOD 

repositories using MQL and SPARQL queries and applying file formats from the mentioned 

file format collections.  

The DipFormatId, DipSoftwareId and DipVendorId objects comprise internal mapping 

between evaluated formats, software and vendors. These objects support merging of similar 

information from different data sources. 

 

Figure 4 - Linked open data (LOD) domain objects (Scenario 2) 

The presented domain object model supports the functionality for LOD analysis related 

information. The input information is a file format extension. It is the starting point for 

further steps. The retrieval of associated LOD repository references, software and vendors is 

supported. 



 

ASSETS Deployed Preservation Services                                Page 12 D2.3.2 V1.0 

The access to the riskmanagement services from the client applications (see Figure 5) is 

provided by the PreservationRiskmanagement (scenario 1) and the 

PreservationRiskmanagementLodDataAnalysis (scenario 2) interfaces.  

Within the first business scenario we use the performMetadataAnalysis() method to create 

a collection analysis report. Then we apply computeMetadataAnalysisStatistics() method for 

metadata analysis statistics evaluation, computeRiskScore() method for preservation 

dimensions evaluation and computeOverallRiskScore() method for risk score report 

generation.  

For the second scenario we use the storeAllExtensions() and checkLodData() methods to  

populate and verify the existence of LOD information within the service database. Then we 

apply retrieveSoftware() or retrieveVendors() methods to retrieve necessary data according 

to passed file format extension.  

The retrievePreservationStatistics() method presents preservation statistics for a particular 

type and file format extension.  

• Type 1 means all existing statistics. It comprises lists of LODFormats, LODSoftware and 

LODVendors in CSV format.  

• Type 2 includes references to LOD repository descriptions 

(PRONOM/DBPEDIA/FREEBASE). 

• Type 3 comprises lists of textual format descriptions.  

• Type 4 comprises lists of software and vendors supporting the given format. 

The PreservationRiskmanagementMetadataAnalysis interface can be used for metadata 

analysis reports creation in CSV format. 

 

Figure 5 - Risk Management interfaces: client side 



 

ASSETS Deployed Preservation Services                                Page 13 D2.3.2 V1.0 

On the server side, services support the PreservationRiskamanagementService interface 

(see Figure 6). Here we see correspondent methods for client methods described above. 

 

Figure 6 - Risk Management: server side 

 

2.3.2 REST services 

The risk management service methods are remotely accessible through the associated REST 

interface using the restURL (http://<server.url>/assets/preservation-riskmanagement/rest) 

as a root service link, where <server.url> can either be: 

� http://assetstest.atc.gr (test server) 

� http://assetsdemo.atc.gr (“production” server) 

Figure 7 shows an admin.html page displaying a table with the available administration risk 

management services required for scenario 2 to initialize Mongo database with rich data 

from LOD repositories and to examine created database for required collections. 



 

ASSETS Deployed Preservation Services                                Page 14 D2.3.2 V1.0 

 

Figure 7 - Available risk mangement administration services required for scenario 2 to 

initialize and check database 

 

The specifications for the above displayed services are listed in the following table: 

Method Response 

type 

Name Input Parameters Function 

GET TEXT /storeallextensions/Freebase/ Overwrite repository 

formats,  

Overwrite LOD data. 

Initialize 

Freebase 

collections. 

GET TEXT /storeallextensions/DBPedia/ Overwrite repository 

formats,  

Overwrite LOD data. 

Initialize 

DBPedia 

collections. 

GET TEXT /storeallextensions/Pronom/ Overwrite repository 

formats,  

Overwrite LOD data. 

Initialize 

Pronom 

collections. 

GET TEXT /storeallextensions/AIT/ Overwrite repository 

formats,  

Overwrite LOD data. 

Initialize AIT 

collections. 

GET TEXT /checkdataexist/  Checking of 

database 

collections 

existence. 

The result of the check method should contain following collections: PronomFileFormat, 



 

ASSETS Deployed Preservation Services                                Page 15 D2.3.2 V1.0 

DBPediaFileFormat, FreebaseFileFormat, LODFormat, LODSoftware, LODVendor, 

DipFormatId, DipSoftwareId, DipVendorId. 

Figure 8 shows an index.html page with a table with the available risk management user 

services related to managing user evaluation scenarios. 

 

Figure 8 - Available risk management user services 

The following table lists user services specifications that provide the Europeana collection 

preservation risks evaluation (See also the UML Diagrams of the domain model): 

Method Response 

type 

Name Input Parameters Function 

GET HTML /metadataanalysis/html/perform @collectionId, ID of 

Europeana 

collection 

@config, 

Configuration 

(collection names 

separated by 

comma) 

@fileName, 

Classifications 

property file name 

Perform 

metadata 

analysis for 

Europeana 

collection. 

GET HTML /metadataanalysis/html/metadata-

statisticsreport 

@collectionId, ID of 

Europeana 

collection 

@config, 

Generate 

metadata 

statistics 

report for 

Europeana 



 

ASSETS Deployed Preservation Services                                Page 16 D2.3.2 V1.0 

Configuration 

(collection names 

separated by 

comma) 

@fileName, 

Classifications 

property file name 

collection. 

GET HTML /metadataanalysis/html/riskscore-

report 

@collectionId, ID of 

Europeana 

collection 

@config, 

Configuration 

(collection names 

separated by 

comma) 

@fileName, 

Classifications 

property file name 

Generate 

preservation 

dimension (e.g. 

Provenance, 

Context, 

Accessibility) 

risk score 

report for 

Europeana 

collection. 

GET HTML /metadataanalysis/html/overallrisk-

scorereport 

@collectionId, ID of 

Europeana 

collection 

@config, 

Configuration 

(collection names 

separated by 

comma) 

@fileName, 

Classifications 

property file name 

Generate 

overall risk 

score report 

for Europeana 

collection that 

comprises risk 

levels. 

 

The following table lists user services specifications that provide the evaluation of software 

and vendor that support preservation plan for particular file format: 

Method Response 

type 

Name Input 

Parameters 

Function 

GET HTML /loddataanalysis/dipformatid/html/ File format 

extension 

Retrieve 

DipFormatId 

object for file 

format 

extension. 

GET HTML /loddataanalysis/software/html/ File format 

extension 

Retrieve 

software for file 

format 

extension. 

GET HTML /loddataanalysis/vendor/html/ File format 

extension 

Retrieve 

vendors for file 

format 



 

ASSETS Deployed Preservation Services                                Page 17 D2.3.2 V1.0 

extension. 

 

 

2.3.3 Risk Management: Client APIs 

The main APIs (see Figure 5) for the Preservation Risk Management service are the 

following:  

1. PreservationRiskmanagement API 

API PreservationRiskmanagement 

Responsibility This interface deals with metadata analysis. 

Provided 

methods 

public CollectionAnalysisReport performMetadataAnalysis (int 

collectionId, String config, int objectsCount);  

analyzes Europeana objects metadata for particular Europeana collection 

ID identified by passed id limited by passing objects count 

@param id  the Europeana collection Id. 

@param config  the configuration comprises string values standing 

for analysis types. 

@param count  the number of test objects to be taken in account. 

Used for test purposes 

@return   the collection analysis report 

 

public MetadataAnalysisStatistics computeMetadataAnalysisStatistics 

(int id, String config, String classification, RiskReportTypesEnum 

reportType); 

computes metadata analysis statistics for particular collection for 

customized configuration. Europeana collection ID used as collection 

identifier. 

@param id  the Europeana collection Id. 

@param config  the analysis configuration containing the names of 

the preservation dimensions. 

@param configuration the path to the XML file that comprises risk 

analysis configuration (e.g. weight and risk score thresholds). 

@param reportType the type of the risk report. 

@return   metadata analysis statistic object 

 

public PreservationDimensions computeRiskReportHtml (int id, String 

config, String classification, RiskReportTypesEnum reportType); 

computes risk score HTML report for particular collection applying the 

configuration file for the required preservation dimmentions@param id 



 

ASSETS Deployed Preservation Services                                Page 18 D2.3.2 V1.0 

 the Europeana collection Id. 

@param dimensionConfig  the configuration containing the 

names of the preservation dimensions. 

@param config the path to the XML file that comprises risk analysis 

configurations like weight and risk score thresholds. 

@param reportType the type of the risk report. 

@return   the risk score report  

 

public OverallRiskScoreReport computeOverallRiskScore (int id, String 

config, String classification, RiskReportTypesEnum reportType); 

computes overall risk score report object for particular collection applying 

analysis configuration 

@param id  the Europeana collection Id. 

@param dimensionConfig  the configuration containing the 

names of the preservation dimensions. 

@param config the path to the XML file that comprises risk analysis 

configurations like weight and risk score thresholds. 

@param reportType the type of the risk report. 

@return   the risk score report 

     ASSETS Common 

 

2. PreservationRiskmanagementLodDataAnalysis API 

API PreservationRiskmanagementLodDataAnalysis 

Responsibility This interface deals with the LOD data retrieval and analysis. 

Provided 

methods 

public String checkLodData();  

informs client about existence of LOD data in service database. If data is 

not existing.  It checks if following collections exist in database and contain 

data: 

 1. file extension collections PronomFileFormat, DBPediaFileFormat and 

FreebaseFileFormat; 

 2. summarized over all LOD repositories LOD formats, software and 

vendors collections (LODFormat, LODSoftware and LODVendor); 

 3. file formats mapping collection DipFormatId (contains unique 

generated DIP identifier and maps file formats identifiers and descriptions 

from all LOD repositories; contains mapping to DipSoftwareId collection); 

4. software mapping collection DipSoftwareId (contains unique generated 

DIP identifier and maps software identifiers and description from all LOD 

repositories; contains mapping to DipFormatId collection); 

5. vendor mapping collection DipVendorId (contains unique generated DIP 



 

ASSETS Deployed Preservation Services                                Page 19 D2.3.2 V1.0 

identifier and maps vendor identifiers and description from all LOD 

repositories; contains mapping to DipFormatId collection). 

@return  information about data existence - a list of 

existing collections. 

 

public String storeAllExtensions (String type, boolean 

overwriteRepositoryFormats, boolean overwriteLodData); 

retrieves LOD data from LOD repositories and stores them into the service 

database. 

@param type  the type of storing. Retrieve data from all LOD 

repositories if type is 'All' or use repository name. 

@param overwriteRepositoryFormats  overwrite repository 

formats collections FreebaseFileFormat, DBPediaFileFormat and 

PronomFileFormat if true. 

@param overwriteLodData  overwrite summarized LOD data 

collections LODFormat, LODSoftware and LODVendor if true. 

@return  the list of updated collections.  

 

public String retrieveSoftware(String ext); 

retrieves softwares that supports or uses a particular file format extension. 

@param ext  the file format extension. 

@return  the software object.  

 

public String retrieveVendor(String ext); 

retrieves associated vendors for particular file format extension. 

@param ext  the file format extension. 

@return  the vendor object.  

 

public String retrievePreservationStatistic(String type, String ext); 

retrieves preservation statistics for particular type and file format 

extension.  

Type 1: all statistics(All).  

Type 2: references to LOD repository descriptions 

(PRONOM/DBPEDIA/FREEBASE); (ReferencesToLodRepositories) 

Type 3: textual format descriptions; (TextualFormatDescriptions) 

Type 4: software and Vendors supporting the given format. 

(SoftwareAndVendorsForFormat). 

@param type  the type of the preservation statistic report. 



 

ASSETS Deployed Preservation Services                                Page 20 D2.3.2 V1.0 

@param ext  the file format extension. 

@return  the vendor object. 

Dependencies ASSETS Common 

The above displayed APIs can be remotely invoked by a client application through their own 

implementative classes PreservationRiskmanagementImpl and 

PreservationRiskmanagementLodDataAnalysisImpl) by using the restURL (Errore. 

Riferimento a collegamento ipertestuale non valido. as main argument during 

instantiation:  

PreservationRiskmanagement pm = new PreservationRiskmanagementImpl(); 

..................................................................................... 

PreservationRiskmanagementLodDataAnalysis pmlda =  

new PreservationRiskmanagementLodDataAnalysisImpl(); 

..................................................................................... 

 

2.3.4 Software packaging 

For the Risk Management service, there are two modules on the ASSETS continuous 

integration environment (HUDSON) which ordinately represent client-side classes and 

server-side services. 

 

The artifacts for the Preservation Riskmanagement are available on the Europeana SVN 

(http://europeanalabs.eu/svn/assets/builds/). 

 

Two modules for the Risk Management can be found on the continuous integration system.  

• "preservation-riskmanagement-client", including artifacts for client-side classes to 

be used to access server-side services:  

o Preservation Riskmanagement Client artifacts: preservation-

riskmanagement-client-0.0.1-SNAPSHOT.jar  

• "preservation-riskmanagement", including artifacts for server-side classes 

implementing the services core:  

o Preservation Riskmanagement Service supporting classes artifacts: 

preservation-riskmanagement-0.0.1-SNAPSHOT.war  

 

2.3.5 Installation and configuration 

The Preservation Riskmanagement service is based on two data sources:  

• a MongoDB instance - to store ASSETS domain objects, LOD and statistics 

information;  

• a PostgreSQL Database instance - which is used to store and retrieve Europena 

collection objects for further statistics computation.  



 

ASSETS Deployed Preservation Services                                Page 21 D2.3.2 V1.0 

Please read ASSETS Workspace Setup.pdf from the ASSETS project for detailed installation 

guidelines (http://europeanalabs.eu/svn/assets/trunk/z_project_setup/documentation/).  

Riskmanagement database installation guidelines: 

1. Install MongoDB 

2. Start MongoDB (e.g. C:\java\mongodb-win32-i386-1.6.5\bin>mongod --rest --port 8060 --

bind_ip localhost) 

3. Start SOLR - AssetsSolrBackendStarter if metadata statistical analysis services are required 

4. Start riskmanagement service - AssetsPreservationRiskmanagementBackendStarter 

5. Load data using URI prefix http://localhost:8983/assets/preservation-

riskmanagement/rest/loddataanalysis/ into riskmanagement database if LOD data analysis 

is required: 

 a. URI=storeallextensions/AIT/true/true (As a response you will get created 

collections names like: AitFileFormat; LODFormat; LODSoftware; DipFormatId; 

DipSoftwareId; LODVendor; DipVendorId;) 

 b. URI=storeallextensions/Pronom/true/true 

 c. URI=storeallextensions/Freebase/true/true 

 d. URI=storeallextensions/DBPedia/true/true 

The storeallextensions service comprises three parameter: 

• type - The type of storing. Retrieve data from all LOD repositories if type is 'All' or 

use repository name 

• overwriteRepositoryFormats - Overwrite repository formats collections 

FreebaseFileFormat, DBPediaFileFormat and PronomFileFormat if true 

• overwriteLodData - Overwrite summarized LOD data collections LODFormat, 

LODSoftware and LODVendor if true 

The last two parameters are flags that could be set to false in order to reduce overhead if 

you need to refresh particular part of the database later. 

6. Check resulting collections existence using service URI=checkdataexist.  

As a response you should get a list of stored collections like (PronomFileFormat; 

DBPediaFileFormat; FreebaseFileFormat; LODFormat; LODSoftware; LODVendor; 

DipFormatId; DipSoftwareId; DipVendorId).  

 

2.4 User/Developer Manual for Risk Management 

2.4.1 USER MANUAL (how to use risk management service home pages 

index.html and admin.html) 

The available risk management service methods are displayed in the risk management 

service home pages: 

• http://<server.url>/assets/preservation-riskmanagement/index.html 



 

ASSETS Deployed Preservation Services                                Page 22 D2.3.2 V1.0 

• http://<server.url>/assets/preservation-riskmanagement/admin.html 

where <server.url> can either be: 

� http://assetstest.atc.gr (test server) 

� http://assetsdemo.atc.gr (“production” server) 

 

Please refer to Figure 7 and Figure 8 for a series of screenshots of the above mentioned 

service home page. 

For details about all the operations that can be performed on this page (representing a way 

of using the risk management service REST URLs), please refer to par. 2.3.2 REST services 

2.4.2  DEVELOPER MANUAL 

This section is going to show some short JAVA code snippets taken from the risk 

management test classes that will allow a developer to quickly understand how objects can 

be instanced ans used by using the service classes. 

2.4.2.1 Perform statistical analysis on metadata fields 

In order to perform metadata statistical analysis, we have to access methods from a 

PreservationRiskmanagement object. As an input parameter we should pass either 

TEST_COLLECTION_ID or TEST_COLLECTION_NAME. The performMetadataAnalysis method 

returns a CollectionAnalysisReport object that comprises metadata analysis report. 

PreservationRiskmanager prm = new PreservationRiskmanagementImpl(); 

CollectionAnalysisReport collectionAnalysisReport = 

prm.performMetadataAnalysis(TEST_COLLECTION_ID); 

2.4.2.2 Compute quantification of metadata analysis results over preservation dimensions 

In order to compute quantification of metadata analysis results over preservation 

dimensions, we have to access methods from a PreservationRiskmanagement object. Based 

on retrieved metadata statistics, preservation dimenstions like “Provenance”, “Context” and 

“Accessibility” can be evaluated. 

In this sample we also use request configuration “configList” and classification property file 

“my-assets-preservation-riskmanagement-classification.xml” to get customized results for a 

particular TEST_COLLECTION_ID. 

PreservationRiskmanager prm = new PreservationRiskmanagementImpl(); 

String riskScoreReportString = null; 

List<String> configList = new ArrayList<String>(); 

configList.add("RiskScoreReport"); 

configList.add("ProvenanceEnum"); 

riskScoreReportString = preservationRiskmanagement 

.computeRiskScoreHtml(TEST_COLLECTION_ID, 

   configList.toString(), 



 

ASSETS Deployed Preservation Services                                Page 23 D2.3.2 V1.0 

   "my-assets-preservation-riskmanagement-classification.xml"); 

The computeRiskScoreHtml method returns a report in HTML format. 

2.4.2.3 Compute preservation risk scores and levels 

In order to compute preservation risk scores and risk levels for metadata statistics like 

“BrokenObjects” and preservation dimensions like “Accessibility”, we have to access 

methods from a PreservationRiskmanagement object. Whereas minimum risk score value is 

0.0 and maximum risk score value is 1.0. The higher is the risk score value the higher is the 

preservation risk. There are three preservation risk levels in AIT analysis model: “Low” 

(green color), “Middle” (yellow color) and “High” represented in red color. The total risk 

score value and total risk level are calculated over all analysed preservation dimensions. 

PreservationRiskmanager prm = new PreservationRiskmanagementImpl(); 

List<String> configList = new ArrayList<String>(); 

configList.add("BrokenObjects"); 

configList.add("AccessibilityEnum"); 

riskScoreReportString = preservationRiskmanagement 

 .computeOverallRiskScoreHtml(TEST_COLLECTION_ID, 

  configList.toString(), 

  "my-assets-preservation-riskmanagement-classification.xml"); 

The computeOverallRiskScoreHtml method returns a report in HTML format. 

2.4.2.4 Check LOD data availability in service database 

In order to check LOD data availability in service database, we have to access methods from 

a PreservationRiskmanagementLodAnalysis object.  

We use the checkLodData method to check whether required database collections 

(PronomFileFormat, FreebaseFileFormat, DBPediaFileFormat, LODFormat, LODSoftware and 

LODVendor) exist. 

PreservationRiskmanagementLodAnalysis pmla = new 

PreservationRiskmanagementLodAnalysisImpl(); 

String report = pmla.checkLodData(); 

2.4.2.5 Store LOD data in database for particular repository 

If LOD data is not available and database is empty or not complete we have to create or 

update the database. In order to store LOD data in database for particular repository (e.g. 

DBPedia), we have to access methods from a PreservationRiskmanagementLodAnalysis 

object.  

The second parameter “true” means that file format collection for DBPedia will be 

overwritten in database if they already exist. The third parameter “true” means that LOD 

data will be overwritten in database if such a data already exist. The text report in response 

informs about the stored or updated collection names. 

PreservationRiskmanagementLodAnalysis pmla = new 



 

ASSETS Deployed Preservation Services                                Page 24 D2.3.2 V1.0 

PreservationRiskmanagementLodAnalysisImpl(); 

String report = pmla.storeAllExtensions("DBPedia", true, true); 

2.4.2.6 Retrieve references to LOD repository 

In order to retrieve references to LOD repository (PRONOM/DBPEDIA/FREEBASE), we have 

to access methods from a PreservationRiskmanagementLodAnalysis object. Each LOD 

repository has its own reference system. Having a reference in a correct format user is able 

to easyily request this repository from another endpoint. Here are some sample references 

for “pdf” file extension. DBPedia – 

<http://dbpedia.org/resource/Portable_Document_Format>; Freebase - 

/en/portable_document_format; PRONOM – fmt/14. 

Evaluated references are returned in HTML format. 

PreservationRiskmanagementLodAnalysis pmla = new 

PreservationRiskmanagementLodAnalysisImpl(); 

String report = pmla.retrievePreservationStatistic( 

 "ReferencesToLodRepositories", TEST_FILE_EXTENSION); 

2.4.2.7 Retrieve textual format descriptions 

In order to retrieve textual format descriptions, we have to access methods from a 

PreservationRiskmanagementLodAnalysis object. Each repository has its own textual 

description. To leave a trace of the original repository, we add repository ID in XML format 

to the description text e.g. <freebase></en/portable_document_format>Description 

text<//en/portable_document_format></freebase> 

Evaluated textual format descriptions are returned in HTML format. 

PreservationRiskmanagementLodAnalysis pmla = new 

PreservationRiskmanagementLodAnalysisImpl(); 

String report = pmla.retrievePreservationStatistic( 

 "TextualFormatDescriptions", TEST_FILE_EXTENSION); 

2.4.2.8 Retrieve software and vendors supporting the given format 

In order to retrieve software and vendors supporting the given format, we have to access 

methods from a PreservationRiskmanagementLodAnalysis object. The evaluated software 

and vendor objects are returned in HTML format 

PreservationRiskmanagementLodAnalysis pmla = new 

PreservationRiskmanagementLodAnalysisImpl(); 

String softwareReport = pmla.retrieveSoftware(TEST_FILE_EXTENSION);  

String vendorsReport = pmla.retrieveVendor(TEST_FILE_EXTENSION); 

 

 



 

ASSETS Deployed Preservation Services                                Page 25 D2.3.2 V1.0 

3. T2.3.2 Preservation Normalization 

3.1 Introduction  

The ASSETS Normalization Preservation service offers a wide range of tools (e.g. Droid, 

JHove, ImageMagick, etc.) and is responsible for deploying and exposing their functionality 

through a well defined set of standardized preservation operations. These include for 

example the identification, characterisation, migration and validation of digital objects.  

The provided APIs allow for example to migrate a digital object from its original 

representation into open and preservation-friendly archival formats, such as e.g. PDF/A for 

documents or TIFF for images - or to profile digital collections. Based on the results of the 

risk management analysis, the service can automatically perform a normalization strategy 

on the provider’s collection. 

3.2 Business scenarios for Normalization 

The Preservation Normalization service is part of the ASSETS Digital Preservation services 

suite and covers the areas of content identification, object characterisation and file format 

migration as well as (semi) automated QA - all essential aspects for covering the 

requirements of a digital roundtrip preservation management component.  

The following business scenarios have been taken into account when designing the ASSETS 

Preservation Normalization service: 

1. Deployment / Scalability /ASSETS Key Performance Indicators, 

2. Definition of atomic-preservation operations and data exchange format, 

3. Tools / Proof of Concept, 

4. OPF / Planets / UIM interoperability. 

 

Deployment / Scalability  

When selecting an adequate technology, framework and deployment scheme the gaps 

between the following design considerations have to be bridged: on one hand having a 

modular, robust and failure-tolerant deployment model and technology at hand both 

backed by an industry quality level open-source implementation and active community; on 

the other, issuing modular, loosely coupled and failure tolerant components which are 

capable of batch processing the given volume of ASSETS / Europeana data collections in 

terms of fulfilling the ASSETS Key Performance Indicators but however at the same time 

having the degree of flexibility to allow easy exploration and individual experimentation 

with tools and services at hand via remote hooks.  

Definition of Standard Preservation Nouns  

This document describes the key API concepts of the ASSETS Preservation Normalization 

service. It is organized around the two core aspects of the API: services and data. It is 

essential to provide interface definitions for the core atomic preservation actions (as 

migration, validation, characterisation, assisted QA, etc.) and an open data exchange 



 

ASSETS Deployed Preservation Services                                Page 26 D2.3.2 V1.0 

format. This allows homogeneous access to a heterogeneous collection and functionality of 

tools. Components for actual framework interaction, performance monitoring, execution, 

service and format lookup, etc. complete the picture. Workflow management is out of scope 

as this part of system’s functionality is being dealt with by the Europeana Unified Ingestion 

Manager (UIM) and is integrated by using a plugin development mechanism. Reference 

implementations for all key components have been established and tested.  

Tools and available Services  

Reference and proof of concept implementations in terms of wrapping tools like Droid, 

Pdfbox, ImageMagic and others, according to the given technology stack, service wrapping 

guidelines, exposing them as atomic preservation operations and making them available 

within the ASSETS Preservation Normalization component for experimentation and/or batch 

processing.  

OPF / Planets /UIM interoperability  

The Open Planets Foundation (OPF) has been established to provide practical solutions and 

expertise in digital preservation, building on the research and development outputs of the 

Planets project. Planets stands for Preservation and Long-term Access through Networked 

Services, which was a four-year project co-funded by the European Union under the Sixth 

Framework Programme to address core digital preservation challenges. OPF is a not-for-

profit company, registered in the UK. To find out more about the OPF and how to join, 

please visit: www.openplanetsfoundation.org.  

For ASSETS as well as for OPF it is important to have a solution that is widely adopted and 

easily being picked up by national heritage organisations and content providers. The OPF 

believes that establishing digital preservation practice requires an open community that 

actively shares best practice and is able to apply group learning.  

The ASSETS preservation Normalization component therefore aims to be compliant and 

interoperable with OPF, even having to bridge the gap of different technological 

requirements, as for example requiring a modular, failure tolerant and loosely coupled 

deployment model.  

 

3.3 Technical Documentation for Normalization 

3.3.1 UML diagrams 

This section extends the deliverable [D2.0.4] for the ASSETS Preservation Normalization 

service.  

Format Registry  

A central term in the ASSETS Normalization API is the notion of a format, for example to 

specify the format an object should be migrated to (e.g. migrate file to TIFF 6.0). File formats 

are represented as URIs and can be specified either as pronom fmt identifier, by file 

extension or MIME type.  

The provided format registry enables creation of format URIs as well as mapping and 

conversion of different format types. The implementation is based on the droid signature 

file (for further information see http://www.nationalarchives.gov.uk/PRONOM/). 



 

ASSETS Deployed Preservation Services                                Page 27 D2.3.2 V1.0 

FormatRegistry registry = OsgiPreservationUtils.getFormatRegistry();  

Given the registry, we can create format URIs for PRONOM IDs, MIME types or file 

extensions, e.g.:  

URI puid = registry.createPronomUri("fmt/13");  

The format registry also provides ways to map the different format types (PRONOM, MIME, 

extension) onto each other, e.g.:  

Set<String> extensions = registry.getExtensions(puid); 

The iPojo meta.xml declaration for dependency injection for the OsgiPreservationUtil 

implementation class is depicted below:  

<ipojo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 xsi:schemaLocation="org.apache.felix.ipojo 

http://felix.apache.org/ipojo/schemas/CURRENT/core.xsd 

     org.apache.felix.ipojo.extender 

http://felix.apache.org/ipojo/schemas/CURRENT/extender-pattern.xsd" 

 xmlns="org.apache.felix.ipojo"> 

 <component  

 

 classname="eu.europeana.assets.services.preservation.common.impl.utils.OsgiPres

ervationUtilsImpl" 

 

 name="eu.europeana.assets.services.preservation.common.impl.utils.OsgiPreservat

ionUtilsImpl" immediate="true"> 

   

  <!-- provides a service of the interface: PreservationLogHelper --> 

  <provides /> 

  <requires field="logger"/> 

  <requires field="serviceregistry"/> 

                <!--iPojo dependency injection--> 

  <requires field="formatregistry"/> 

 </component> 

  

 <instance 

component="eu.europeana.assets.services.preservation.common.impl.utils.OsgiPreservatio

nUtilsImpl" /> 

</ipojo> 



 

ASSETS Deployed Preservation Services                                Page 28 D2.3.2 V1.0 

 

Figura 9 - Format Registry Concepts and Domain Object  

 



 

ASSETS Deployed Preservation Services                                Page 29 D2.3.2 V1.0 

Data Exchange Format  

Service interoperability is essential to have a simple data exchange format at hand which on 

the one hand is able to deliver the actual byte stream but at the same time is able to hold 

simple metadata on the object’s metadata (as processing history, events, actors, etc).  

To allow streaming of large files even via web services, the object's content can be created 

in two different ways: by value (the content is embedded in the XML representation of the 

digital object) or by reference (the content will be streamed)  

The central entities are implemented as immutable classes, which are created using the 

builder design pattern. A minimal digital object consists of nothing but its content. Setting 

additional attributes therefore can be done on the builder before constructing the actual 

object. For example: 

new DigitalObject.Builder(Content.byValue(bytes)).permanentUri(id).build(); 

At the same time, combining an interface with a builder allows the actual implementation 

class to be hidden behind the API (e.g. to be changed or swapped out after releasing the 

API).  



 

ASSETS Deployed Preservation Services                                Page 30 D2.3.2 V1.0 

 

Figure 10 – Standard Data Exchange Objects 

 

• Jasper Migration  

The Jasper19 service provides a reference implementation of the ‘Migrate’ atomic 

preservation-action interface and serves as sample on how to wrap command line tools. It is 

setup to call the Jasper Transcoder Version 1.900.1 for JPG to JP2 (JPEG2000) and, vice 

versa, JP2 to JPG conversion via the tool’s shell interface. Jasper is a file format converter 

specialized in JPEG-2000 encoding Copyright (c) 1999-2000 Image Power, Inc. and the 

University of British Columbia.  



 

ASSETS Deployed Preservation Services                                Page 31 D2.3.2 V1.0 

 

Figure 11 – Jasper Migration Service Sample 

 

• OSGi Service Lookup  

Besides simplifying the process of OSGi service lookup for ASSETS preservation service 

providers through iPojo dependency injection, we provide utility APIs to make the process 

of service wrapping as simple as possible.  



 

ASSETS Deployed Preservation Services                                Page 32 D2.3.2 V1.0 

 

Figure 12 – OSGi Service Utilities 

 

• Service Framework Registration  

The service registry and notification handler at hand enables users and other components to 

look up atomic preservation services that have been registered on the OSGi runtime. A 

notification mechanism is used to monitor framework events for activated bundles of the 

supported interfaces. Information provided by the service registry can be used to 

dynamically select and invoke simple services through the text user interface as well as 

through its web service operations.  



 

ASSETS Deployed Preservation Services                                Page 33 D2.3.2 V1.0 

 

Figure 13 – Service Framework Registration Approach 

 

3.3.2 Web services 

The ASSETS Preservation Normalization component takes a Java-first approach. This means 

that web-services are generated from Java Interfaces that carry web service annotations 

(see chapter technology decision). Therefore, the ASSETS Normalization components are 

available both as a platform-independent web services for easy experimentation as well as a 

plain Java library for digital preservation systems and service development. The main APIs 

for the Preservation Normalization service are the following:  

• preservation operations,  

• service registry,  

• registration manager, 

• format registry.  



 

ASSETS Deployed Preservation Services                                Page 34 D2.3.2 V1.0 

This is accomplished by APIs for text user system interaction, data access, performance 

monitoring, logging, and normalisation of measurements. 

Preservation Operations  

The different kinds of preservation operations are defined as Java Interfaces where every 

operation is reflected by a corresponding interface definition: Migrate, Validate, Identify, 

Characterise, Compare and Modify.  

Additionally, there are some specialized versions of these Interfaces and some additional, 

less common interfaces. A service implementation written in Java implements the desired 

interface and defines itself as a web service using the @javax.jws.WebService annotation 

with an endpointInterface attribute.  

@WebService(name = AssetsAndrewIdentify.NAME, 

        serviceName = Identify.NAME,  

        targetNamespace = PlanetsServices.NS, 

        endpointInterface = 

"eu.europeana.assets.service.preservation.common.api.services.identify.Identify" 

     ) 

This allows the service to reuse all web service specific settings from the Interfaces, without 

declaring them itself. For Java OSGi clients, DOSGi (Distributed OSGi) enables to use the 

exposed web service without interfering with SOAP or a WSDL directly, just using the objects 

as standard service bundle objects. A client is therefore able to work with those objects. A 

non-Java / non-OSGi client can generate stubs from the WSDL by making use of JAX-WS or 

by standalone tools as for example SOAP-UI. This way, the ASSETS preservation services can 

be accessed in a language-independent way.  

All operations provide action specific return objects to the given function they implement 

(e.g. MigrateResult, ValidateResult, IdentifyResult). These are typically composed of the 

specific result (e.g. a migrated object Migration, a format identifier for Identify, etc.) as well 

as a general service report which contains a type (info, error, warn), a status (success, 

installation error, tool error) and a message. For example:  

ServiceReport report = new ServiceReport(Type.INFO, Status.SUCCESS, message);  

Each interface presented above extends the PlanetsService interface (see requirement OPF 

interoperability within the introduction of this document) and therefore must implement a 

describe() method. A service description contains service metadata like supported input 

formats, the underlying tool name and version, etc. These service descriptions are used to 

present and explore registered services after they have been picked up by the service 

registry event notification mechanism.  

 

The main APIs for the atomic preservation operations are the following:  

API Migrate 

Responsibility Migrates a digital object from an input-Format to an output-Format. 

Provided 

methods 

public MigrateResult migrate(final DigitalObject digitalObject,URI 

inputFormat,URI outputFormat,List<Parameter> parameters ) 



 

ASSETS Deployed Preservation Services                                Page 35 D2.3.2 V1.0 

takes the binary content of a digital object container and transforms it 

according to the given output format specification. Additional tool 

parameters for fine tuning the tool’s settings can be specified 

@param digitalObject      The digital object to migrate 

@param inputFormat       The initial format (migrate from) 

@param outputFormat    The required format (migrate to) 

@param parameters       A list of parameters to provide fine grained tool 

control 

@return A new digital object, the result of migrating the given object 

  

 

API Identify 

Responsibility Identification of a digital object 

Provided 

methods 

public IdentifyResult identify(DigitalObject digitalObject, 

List<Parameter> parameters); 

takes the binary content of the digital object container and runs a format 

identification on it. 

@param digitalObject  The Digital Object to be identified. 

@return Returns a Types object containing the identification result 

 

API Compare 

Responsibility Comparison of two digital objects 

Provided 

methods 

public CompareResult compare(final DigitalObject first,final 

DigitalObject second, final List<Parameter> config); 

takes two binaries provided by the digital object container and performs a 

parameter by parameter  similarity check 

@param first                   The first of the two digital objects to compare 

@param second              The second of the two digital objects to compare 

@param config                A configuration parameter list 

@return A list of result properties, the result of comparing the given 

digital object, wrapped in a result object 

 

public List<Parameter> convert(final DigitalObject configFile); 

Convert a tool-specific configuration file to a list of service properties that 

follow the standard URI scheme and therefore can be used within the 

atomic service API.  

@param configFile         The tool-specific configuration file 

@return A list of parameters containing the configuration values 



 

ASSETS Deployed Preservation Services                                Page 36 D2.3.2 V1.0 

 

Service Registry  

The service registry listener enables users and service providers to look up information 

about ASSETS atomic preservation services and to easily interact with them.  

In combination with the service registration event handler, which is used to listen for 

supported services that are registered on the OSGi framework, it is straight forward and 

simple to request and manage information about available services. The service registry can 

be accessed from the text user interface shell extension as well as by the SOAP-based web 

service and distributed OSGi API for getting a handle to execute upon a given set of data 

objects.  

The main APIs for the atomic preservation operations are the following (the Interfaces of 

the Assets services are made compatible with the OPF technology stack, therefore the 

intensive usage of the Planets service Interfaces) 

API ServiceRegistry 

Responsibility Provides hooks for querying all registered and known atomic preservation 

services which have been deployed on the system 

Provided 

methods 

public <T extends PlanetsService> List<T> 

getAllPlanetsServicesOfInterface( Class<T> ofinterface) 

gets a list of all registered preservation services of a given interface type 

@param interface           The service’s interface type 

@return A typed list of all known service instances of the requested type 

 

public List<Class> getSupportedPlanetsServiceInterfaces(String 

serviceID); 

 

@param serviceId           A unique identifier for a service on the system 

@return A list of all supported preservation operations of a given service 

implementation 

 

public <T extends PlanetsService>T getPlanetsService(String serviceId, 

Class<T> interface) 

 

gets a list of all registered preservation services of a given interface type 

@param serviceId           A unique identifier for a service on the system 

@param interface           according interface of the requested service  

@return  Returns a typed PlanetsService handle for the requested 

serviceId if the service is known to the system.  

 

public List<PlanetsService> getAllPlanetsServices() 

 

queries the service registry  for all available atomic preservation services 

 



 

ASSETS Deployed Preservation Services                                Page 37 D2.3.2 V1.0 

@return  a list of all available Planets Services on the framework 

 

Format Registry  

Another central noun in the given API is the notion of a ‘format’ for example to specify the 

format an object should be migrated to (e.g. migrate a digital object to JPEG2000) or the 

supposed format of a file to validate against (e.g. validate that a digital object is a PNG). 

Formats are represented in the code as URIs and can either be specified as PRONOM id (e.g. 

assets://pronom/fmt/13, see PRONOM), as file extension, or as MIME type.  

A registry instance can (same as for the Service Registry) be obtained through dependency 

injection by iPojo or just be using the given OsgiPreservationUtil utility class which again 

enables us to hide the actual registry implementation behind the API. The provided 

implementation is based on the Droid signature file.  

private OsgiPreservationUtils opu; FormatRegistry registry = opu.getFormatRegistry();  

The format registry API enables creation of and conversion between these supported format 

URIs. Given the registry, we can create format URIs for PRONOM IDs, MIME types or file 

extensions, e.g.: 

URI puid = registry.createPronomUri("fmt/13");  

URI euri = registry.createExtensionUri(“PNG”);  

The format registry also provides ways to map the different format types (PRONOM, MIME, 

extension) to each other, e.g.:  

Set<String> extensions = registry.getExtensions(puid);  

The main web-service APIs for the Format Registy component:  

API FormatRegistry 

Responsibility Handling of format URIs e.g. migration of mime-type to PRONOM 

conversion between different URI namespaces (e.g. assets://pronom/ 

fmt/13, planets://pronom/fmt/13) 

Provided 

methods 

public <T extends PlanetsService> List<T> 

getAllPlanetsServicesOfInterface( Class<T> ofinterface) 

gets a list of all registered preservation services of a given interface type 
 

@param interface           The service’s interface type 

@return A typed list of all known service instances of the requested type 

 

List<URI> search(String query); 

@param query                 The query (as file extension) 

@return the list of URIs matching query 

 

Set<URI> getUrisForExtension(String extension); 



 

ASSETS Deployed Preservation Services                                Page 38 D2.3.2 V1.0 

@param extension          The extension 

@return the set of URIs for the passed extension 

 

Set<URI> getUrisForMimeType(String mime); 

@param mime                 The mime type 

@return the Set of URIs for the passed mimetype 

     

List<URI> getFormatUriAliases(URI typeUri); 

This class looks up the different Format URIs consistent with the given URI. 

@param typeUri               The URI 

@return a List of format URIs consistent with the passed URI 

     

List<Format> getFormatAliases(URI typeURI); 

@param typeURI             The type URI 

@return All aliases (in other format types) for the given URI 

     

Format getFormatForUri(URI puri); 

@param puri                    URI schema provided by the FormatRegistry 

@return A format instance for the given URI 

         

Set<String> getExtensions(URI uri); 

@param uri                      The URI to find extensions for 

@return Extensions corresponding to the given URI 

 

String getFirstExtension(URI uri); 

@param uri                      The URI to find an extension for 

@return The first extension found corresponding to the given URI 

 

URI createExtensionUri(String extension); 

@param extension         The simple file extension 

@return A URI representing the extension 

 

URI createActionUri(String action);         

@param action               The action a modify service can perform (e.g.: 

"repair", "rotate", "crop" ...) 

@return a URI representing this action 



 

ASSETS Deployed Preservation Services                                Page 39 D2.3.2 V1.0 

 

URI createPronomUri(String pronom); 

@param pronom            The pronom ID to create URI for, e.g. "fmt/101" 

@return A URI representing the given pronom ID 

 

URI createMimeUri(String mime); 

@param mime                The mime type to create a URI for 

@return A URI representing the given mime type 

 

URI createAnyFormatUri(); 

@return A URI representing any format. 

     

URI createFolderTypeUri(); 

@return a URI representing a folder.    

 

URI createUnknownFormatUri(); 

@return A URI representing an unknown format. 

     

Boolean isUriOfType(URI uri, UriType type); 

@param uri The URI to test 

@param type                  The URI type to test for 

@return True, if the given URI is of the given type 

 

String getValueFromUri(URI uri); 

@param uri                     The URI 

@return The raw value the URI was created with or null     

 

Shell User Interface  

Most of the components, like the service registry for example, provide a command line shell 

extender which allows invoking preservation specific operations through the gogo shell on 

Karaf (i.e. standard usage of Karaf based OSGi platforms). All components use the scope 

‘preserv’ to provide well documented commands on the shell. The snippet below depicts 

parts of the service registry’s execution interface with arguments for providing the content - 

either by file, directory or Europeana Semantic Elements (ESE) – as well as a reference on 

the selected atomic preservation action to execute.  

@Command(name = "servicereg-execute", scope = "preserv") 

public class ServiceRegistryTUIExecute implements Function, Action{ 

 //these fields are injected by blueprint 



 

ASSETS Deployed Preservation Services                                Page 40 D2.3.2 V1.0 

 private PreservationLogHelper log; 

 private ServiceRegistry servreg; 

  

 @Argument(name="content", required=true, description=("the src object as input.     

e.g. file reference, directory, or EuropeanaID"), index=1) 

 private String inputsrc; 

  

 @Argument(name="preservation serviceID", required=true, description=("the 

planets preservation service.id to execute"), index=0) 

 private String serviceID; 

 [...] 

 @Option(name="-s",aliases={"--src"},description=("the type of the provided input 

src object. e.g. FILE, DIR, ESE")) 

 private InputDigitalObjectType inputsrctype = InputDigitalObjectType.FILE; 

 /** 

  * Blueprint requires to have constructors for handling the arguments 

  * @param servicereg 

  * @param util 

  */ 

 public ServiceRegistryTUIExecute(ServiceRegistry servicereg, PreservationLogHelper 

util){ 

  this.servreg = servicereg; 

  this.log = util; 

 } 

 /* (non-Javadoc) 

  *@see org.apache.felix.gogo.commands.Action#execute(org.osgi.service 

.command.CommandSession) 

  */ 

 public Object execute(CommandSession session) throws Exception { 

  return execute(session, null); 

 } 

 /* (non-Javadoc) 

  *@see org.osgi.service.command.Function#execute(org.osgi.service.command. 

CommandSession, java.util.List) 

  */ 

 public Object execute(CommandSession commandSession, List<Object> arguments) 



 

ASSETS Deployed Preservation Services                                Page 41 D2.3.2 V1.0 

   throws Exception { 

  log.debug("Service-Registry execute"); 

  if(this.inputsrctype.equals(this.inputsrctype.FILE)){ 

   //case1: we're having input type FILE 

   File f = new File(this.inputsrc); 

   Identify identify = servreg.getPlanetsService(this.serviceID, 

Identify.class); 

   Return identify(commandSession,f,identify); 

  } 

 } 

 public void identify(CommandSession commandSession, File f, Identify 

identifyservice){ 

  IdentifyExecution exec = new IdentifyExecutionImpl 

(f,identifyservice,servreg); 

  exec.execute(); 

 } 

 

The main web-service APIs for the Text User Interface component:  

API IdentifyExecution 

Responsibility Setup and triggers an atomic preservation service for the Identify action.  

Provided 

methods 

public void execute()  

this is responsible for launching a pre-configured workflow on the system. 

The workflow includes: selecting the Identification service to run, the data 

itself as well as the post-processing i.e. data normalisation and database 

persistency. The constructor and methods for configuring an 

IdentifyExecution are all privately invoked by the given command line 

interface but not exposed through the web-service API as this part (i.e. 

workflow) is covered by UIM (unified ingestion manager plugin) 

integration rather than by this component. 

 

Service Performance  

A central key to standardised timing and performance monitoring is the given service 

performance measurement utility for service developers, which can be used to track 

performance consistently across the different services. To use it first instantiate the class 

when the preservation action starts which will trigger the timing on the construction. This is 

to prevent accidental re-use of each instance of the object, in order to avoid copies of the 

object being used in a non-thread-safe manner. When the service has finished its work and 

before creating the final ServiceReport call stop() to halt the timer and use 

getPerformanceProperties() to attach the measured results to the ServiceReport object. 

Besides monitoring the wall-clock, it also provides information on CPU time usage of the 



 

ASSETS Deployed Preservation Services                                Page 42 D2.3.2 V1.0 

current thread (e.g. half the wall-clock time if this process is only getting 50% of the CPU 

time), compilation time, heap usage, memory allocation, etc. 

Overview  

The purpose of this document is to provide a high-level introductory overview of the API. 

For detailed documentation consult the Javadoc API documentation and the unit tests, both 

included in the ASSETS Preservation Normalization SVN repository. It contains detailed 

documentation and examples on service implementations of the different interfaces 

(Migrate, Validate, Identify, etc.) including sample usage and construction of digital objects, 

the service and format registries, as well as information on additional components as the 

log-utility, performance measurement, data normalization, directory monitoring or the 

client utility classes in terms of Javadoc and corresponding JUnit-Tests.  

 

3.3.3 Software packaging 

Technology Decisions  

Due to the given requirements regarding UIM compatibility / integration as well as other 

business cases described in the first part of this document, a different choice of technology 

stack and setup, compared to most other ASSETS ‘Spring’ services, was chosen. Modularity 

is achieved by following the OSGi design principles and technology.  

OSGi makes it possible to define dependencies of every individual module (so called 

bundles) with others. An OSGi implementation sits on top of the JVM and provides 

mechanisms for service management, component definition, execution, management and 

life cycle control of modules. Services are exposed as interfaces and registered with 

providing implementations. Through this framework lookup of artefacts and exposition of 

services together with the event based notification mechanism of life-cycle (start, stop, 

installed, etc.) events, the system is loosely-coupled compared to regular java structures. 

This even makes it possible to exchange components on the fly during runtime thus allowing 

other bundles to react in an expected and failure tolerant manner.  

Apache Karaf is built upon the Apache Felix runtime and provides higher level features and 

services specifically designed for creating OSGI-based servers. This for example includes hot 

deployment of OSGi bundles, dynamic configuration management, Karaf-features for easy 

and efficient component deployment. The extensible shell console for example was used to 

provide an easy to use text interface to expose the ASSETS Preservation Normalization 

component’s functionality. For simplifying the process of OSGi service lookup and binding, 

we have chosen iPojo dependency injection. Together with Apache Maven 2 for artefact 

handling, dependency management and the maven plugins ‘maven-bundle-plugin’ and 

‘maven-ipojo-plugin’ which smoothly integrate into the build process, this has proven as a 

solid and modular way of packaging and handling bundle artefacts.  

Finally to meet the requirements of additionally exposing atomic-preservation services and 

key components through SOAP web services we have chosen to go with the ‘PAX 

whiteboard extender’ bundle. This is an extender bundle that eases the pain of registering 

servlets, resources, filters and listeners and keeping track of Http Service availability. In our 

case it picks up javax.jws.WebService annotations and XML configurations to expose the 

SOAP web services. By having the ‘Distributed OSGi Distribution Software Single-Bundle 

Distribution’ available on both the client and server side OSGi runtime profiles these 

remotely exposed components can be treated as standard OSGi bundles without even 



 

ASSETS Deployed Preservation Services                                Page 43 D2.3.2 V1.0 

noticing a difference.  

Please note, the main drawback of the above described technology decision is although it’s 

simple and straight forward to actually wrap a dependant jar as OSGi bundle, the complexity 

is hidden in discovering malfunctions of 3rd party libraries. As the scope of all dependant 

java libraries is handled by the framework all bundles have to adhere to the restricted OSGi 

classloading principles. Not all libraries (especially the older ones) are able to fully cope with 

this setup. We had for example to modify and deploy a custom version of JAXB as at this 

time no OSGi compliant version existed.  

 

For the Preservation Normalization service, there are six modules on the ASSETS continuous 

integration environment (HUDSON). 

The artifacts for the Preservation Normalization are available on the Europeana SVN 

(http://europeanalabs.eu/svn/assets/builds/). 

 

The above mentioned modules on the continuous integration system are: 

• “preservation-service-registry-0.0.1-SNAPSHOT.jar”, packaging type: bundle. osgi 

bundle for listing and tracking registered preservation services on the system 

• “preservation-planets-techreg-0.0.1-SNAPSHOT.jar”, packaging type: bundle. Osgi 

bundle for handling PRONOM file format information  

• “preservation-planets-services-client”, packaging type: pom, including artifacts for 

client-side standalone distributed OSGi service bindings 

o “assets-all-services-dosgi-client-0.0.1-SNAPSHOT.jar”, packaging type: 

bundle. A stand alone DOSGi client for consuming the Assets/Planets 

preservation services functionality  

o “assets-all-services-dosgi-client-binding-0.0.1-SNAPSHOT.jar”, packaging 

type: bundle. A single Maven artefact to import all required service 

descriptions and interfaces for a standalone DOSGi client binding 

• “preservation-planets-services-parent”, packaging: pom. A root artefact for atomic 

preservation service implementations 

o “assets-preservation-services-droid-0.0.1-SNAPSHOT.jar”, packaging type: 

bundle. Identification service wrapper for Droid 6. Exposing DOSGi service 

deployment via iPojo 

o “assets-preservation-services-jasper19-0.0.1-SNAPSHOT.jar”, packaging 

type: bundle. Migration service wrapper for the  Jasper Transcoder Version 

1.900.1 for JPG to JP2 (JPEG2000) and, vice versa, JP2 to JPG conversion. 

•  “preservation-planets-common-0.0.1-SNAPSHOT.jar”, packaging: bundle. The 

common infrastructure for the ‘legacy’ planets preservation components 

• “preservation-common-0.0.1-SNAPSHOT.jar”, packaging: pom. common 

infrastructure 

o “preservation-osgi-utils-0.0.1-SNAPSHOT.jar”, packaging: bundle. Provides 

helpers that via dependency injection pick up OSGi services. A more 

convenient way of using the preservation services techreg, servicereg, etc.  



 

ASSETS Deployed Preservation Services                                Page 44 D2.3.2 V1.0 

o “preservation-log-utils-impl-0.0.2-SNAPSHOT.jar” and “preservation-log-

utils-api-0.0.1-SNAPSHOT.jar” Preservation Log Utility that exposes 

constants and convenient  interfaces for logging preservation service 

events. 

3.3.4 Installation and configuration 

The Preservation Normalization service is based on and tested against Apache Karaf 2.1.0. 

To install the components on Karaf use Maven to build and to deploy the bundles into the 

central Maven repository. Alternatively a separate OSGi Bundle Repository (OBR) could be 

used if you’re not allowed to deploy into the central Maven repository. Make sure you have 

included the root Karaf-feature descriptor by calling features:addurl before running the 

individual features:install command: 

<features name="preserve-services-jtidy "> 
    <feature name="planets-service-jtidy" version=" 1.0.1.SNAPSHOT"> 
                 
                <!--features this feature depends u pon--> 
                <feature version='2.1.0'>http</feat ure> 
                 
                <!-- use the org.ops4j.pax.url wrap per for deploying 
jars that aren't available as bundles--> 
         <bundle>wrap:mvn:com.sun.xml.ws/jaxws-rt/2 .2</bundle> 
          <bundle>mvn:commons-io/commons-io/1.4</bu ndle> 
         
         <!--provided and mavenized by the jtidy's build process--> 
         <bundle>wrap:mvn:planets-suite/planets-ser vices-
3rdpartyjars-jtidy/1</bundle> 
     </feature> 
     
    <feature name="ipojo" version="1.6.0"> 
                
<bundle>mvn:org.apache.felix/org.apache.felix.ipojo /1.6.0</bundle> 
    </feature>     
</features> 

For detailed information please refer to the Setup_and_Installation_Guidelines.pdf which is 

part of the source code subversion repository of the project. 

 

3.4 User/Developer Manual for Normalization 

This section gives a walkthrough on tool wrapping process and contains a specific example 

showing how to wrap Droid through its native Java API. Further the required steps that are 

required for deploying the service on the ASSETS Normalization system are presented.  

• Introduction 

Pronom and Droid are mainly developed at the National Archives (TNA) of the UK and have 

been a key contribution to the digital preservation community. Pronom is a registry of 

information about file formats. The TNA provides access to the Pronom registry on-line at 

http://www.nationalarchives.gov.uk/PRONOM as well as by web service endpoints and 

maintains the information. Droid is a software application that uses some of the file format 

information to identify the type of specific digital objects through external and internal 

signature checks. Droid is available on-line through SourceForge at 



 

ASSETS Deployed Preservation Services                                Page 45 D2.3.2 V1.0 

http://droid.sourceforge.net/ and is managed as an open source project. In order to identify 

file formats Droid uses a XML file containing signature information. First, it includes the 

typical file extensions for the format. For example, PDF files typically end with a ‘pdf’ 

extension. Pronom calls these ‘external signatures’. Second, it includes patterns that can be 

used to recognise a file format based on the binary object. For example, a PDF file starts 

with and ends with Pronom calls these ‘internal signatures’. Third, it includes some 

relationships between formats. For example, PDF is a supertype of PDF 1.1, 1.2, and so on. 

For more information on the signature files see: OPF on Pronom and Droid  

An alternative tool that makes use of the Droid signature files for object identification is for 

example Fido, see Fido on OPF for high performance object identification  

• Selecting Functionality for the Service Wrapper  

As Droid as tool itself is quite flexible in its options it is essential before creating a service 

wrapper to take the decision what functionality should be exposed. For example Droid 

identification is performed by checking the file against a set of internal and external 

signatures. There are several possible outcomes of the identification process as  

• Positive, the file is identified and one or more PRONOM identifiers are returned.  

• Tentative, the file matches external signatures, one or more Pronom identifiers are 

returned.  

• Negative, the file could not be identified, no identifier is returned.  

Droid signatures are contained in an accompanying XML signature file. The tool provides 

methods for checking whether a current signature file is up to date and downloading a new 

one from the PRONOM web site. This is higher level functionality and it was decided to 

simplify by packaging the project with the latest signature file. The current service wrapper 

implementing comes with Droid 3.0, signature file version 49. When the signature file 

requires updating the latest version is added to the project and the service is rebuilt and 

redeployed.  

• Choosing an Interface to Implement  

The eu.europeana.assets.service.preservation.common.api.services.identify.Identify 

interface requires to implement the methods describe(), which delivers service and tool 

information (as licence information, etc.) and identify(DigitalObject obj) which takes a digital 

object and returns a URI indicating the identity of the file format of the object or an 

unknown type URI if identification failed. Attached we present a entire walkthrough over 

the required configurations and settings to provide an assets preservation service. 

/** 

* @author Andrew Lindley (AIT) - andrew.lindley@ait.ac.at 

* @since 11.02.2011  

* Digital Preservation Object Identification Service based on Droid 

*  

********************************************************* 

* Copyright (c) 2010, 2011 The Assets4Europeana Project Partners. 

* 

* All rights reserved. This program and the accompanying  



 

ASSETS Deployed Preservation Services                                Page 46 D2.3.2 V1.0 

* materials are made available under the terms of the  

* European Union Public Licence (EUPL), version 1.1 which  

* accompanies this distribution, and is available at  

* [http://ec.europa.eu/idabc/eupl.html] 

* 

*********************************************************** 

* Parts of this work is based on The Planets Project 

* Copyright www.openplanetsfoundation.org 

* Apache License, Version 2.0 

* [http://www.apache.org/licenses/LICENSE-2.0.txt] 

*********************************************************** 

*/ 

 

@WebService(name = Droid.NAME, serviceName = Identify.NAME, targetNamespace = 

PlanetsServices.NS, endpointInterface = "eu.planets_project.services.identify.Identify") 

public final class Droid implements Identify, Serializable { 

 […] 

//Note: OSGi abstracts the location of the bundle contents. It is an abuse of the class 

loader API to assume all resource URLs are on the file system 

 // The configuration for the service 

 private static BinarySignatureIdentifier DROID = new BinarySignatureIdentifier(); 

 static {  try{ 

  //get the Signature File from the bundle’s resources which have been included via 

bundle-include 

                InputStream in = getClass().getResourceAsStream("/resources/Droid_Signature 

File.xml"); 

               File tempSig = copyStreamToTempFile(in); 

    DROID.setSignatureFile(tempSig.getAbsolutePath()); 

  DROID.init(); 

                   } catch(Exception e){} 

 } 

 

 private IdentificationMethod method; 

 /** 

  * {@inheritDoc} 

  * @see eu.planets_project.services.identify.Identify 



 

ASSETS Deployed Preservation Services                                Page 47 D2.3.2 V1.0 

#identify(eu.planets_project.services.datatypes.DigitalObject, java.util.List) 

  */ 

 public IdentifyResult identify(final DigitalObject digitalObject, 

final List<Parameter> parameters) { 

  File file = toFile(digitalObject); 

  List<URI> types = identifyOneBinary(file); 

  ServiceReport report = null; 

  if (types == null || types.size() == 0) { 

   report = new ServiceReport(Type.ERROR, Status.TOOL_ERROR, 

     "No identification result for: " + file); 

  } else { 

   report = new ServiceReport(Type.INFO, Status.SUCCESS, ""); 

  } 

  IdentifyResult.Method method = null; 

  if (IdentificationMethod.BINARY_SIGNATURE.equals(this.method)) { 

   method = IdentifyResult.Method.MAGIC; 

  } else if (IdentificationMethod.EXTENSION.equals(this.method)) { 

   method = IdentifyResult.Method.EXTENSION; 

  } 

  IdentifyResult result = new IdentifyResult(types, method, report); 

  return result; 

 } 

 

 /** 

  * {@inheritDoc} 

  * @see eu.planets_project.services.identify.Identify#describe() 

  */ 

 public ServiceDescription describe() { 

  ServiceDescription.Builder sd = new ServiceDescription.Builder( 

    "DROID Identification Service", 

    Identify.class.getCanonicalName()); 

  sd.version(VERSION); 

  sd.classname(this.getClass().getCanonicalName()); 

  sd.description("Identification service based on Droid (DROID 3.0, Signature 

File 16)."); 



 

ASSETS Deployed Preservation Services                                Page 48 D2.3.2 V1.0 

  sd.author("Carl Wilson, Fabian Steeg"); 

  sd.tool(Tool.create(null, "DROID", "6.0", null, 

    "[http://droid.sourceforge.net/"));] 

  sd.furtherInfo(URI.create("[http://droid.sourceforge.net/"));] 

  // Taking this out as logo is no longer hosted there, and this is bad 

  // practice anyway - should be hosted locally. 

  // sd.logo( 

  // 

URI.create("[http://droid.sourceforge.net/wiki/skins/snaphouston/droidlogo.gif"));] 

  sd.serviceProvider("The Planets Consortium."); 

  return sd.build(); 

 } 

 

 /** 

  * Identify a file represented as a byte array using Droid. 

  *  

  * @param tempFile The file to identify using Droid 

  * @return Returns the Pronom IDs found for the file as URIs in a Types object 

  */ 

 private List<URI> identifyOneBinary(final File tempFile) { 

  // Set up the identification request 

  RequestMetaData metadata = new RequestMetaData(tempFile.length(), 

    tempFile.lastModified(), tempFile.getName()); 

  RequestIdentifier identifier = new RequestIdentifier(tempFile.toURI()); 

  identifier.setParentId(1L); 

  IdentificationRequest request = new FileSystemIdentificationRequest( 

    metadata, identifier); 

  try { 

   request.open(new FileInputStream(tempFile)); 

  } catch (FileNotFoundException e) { 

   e.printStackTrace(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

 



 

ASSETS Deployed Preservation Services                                Page 49 D2.3.2 V1.0 

  // Get the results collection 

  IdentificationResultCollection resultSet = DROID 

    .matchBinarySignatures(request); 

  List<IdentificationResult> results = resultSet.getResults(); 

  List<URI> formatHits = new ArrayList<URI>(results.size()); 

  // Now iterate through the collection and create the format URIs 

  for (IdentificationResult result : results) { 

   formatHits.add(URI.create("info:pronom/" + result.getPuid())); 

   this.method = result.getMethod(); 

  } 

  return formatHits; 

 } 

     } 

All endpoint implementation classes must have a Web Service annotation.  

@WebService (javax.jws.WebService) 

The name parameter is the name of the wsdl:portType, the serviceName is the Service 

name of the web service,  

@WebResult (javax.jws.WebResult)  

This annotation is used to customise the mapping of the method return value to a WSDL 

part. The name parameter gives the name if the return value in the WSDL, targetNamespace 

supplies the XML namespace of the return value, while partName specifies the partName 

for the result. 

• Building and Deployment 

The following artefact which is taken from the Droid identification service’s pom.xml file 

presents the steps which are required to actually build the osgi bundle.  

<project xmlns="[http://maven.apache.org/POM/4.0.0"]xmlns:xsi="[http://www.w3.org/ 

2001/XMLSchema-instance"] xsi:schemaLocation="[http://maven.apache.org/POM/4.0.0] 

[http://maven.apache.org/xsd/maven-4.0.0.xsd">] 

 <parent> 

  <groupId>eu.europeana.assets</groupId> 

  <artifactId>preservation-planets-services-parent</artifactId> 

  <version>0.0.1-SNAPSHOT</version> 

  <relativePath>../pom.xml</relativePath> 

 </parent> 

 <modelVersion>4.0.0</modelVersion> 

 <groupId>eu.europeana.assets</groupId> 



 

ASSETS Deployed Preservation Services                                Page 50 D2.3.2 V1.0 

 <artifactId>assets-preservation-services-droid</artifactId> 

 <packaging>${packaging.type}</packaging> 

 <name>Assets Preservation - Normalization - planets services - droid</name> 

 <description>wrapping droid 6.0 as Assets preservation-service. exposing DOSGI 

web-service deployment via iPojo</description> 

 <build> 

  <plugins> 

   <plugin> 

    <groupId>org.apache.maven.plugins</groupId> 

    <artifactId>maven-surefire-plugin</artifactId> 

    <version>2.5</version> 

   </plugin> 

  </plugins> 

 </build> 

 <profiles> 

  <profile> 

   <id>bundle</id> 

   <activation> 

    <activeByDefault>true</activeByDefault> 

   </activation> 

   <properties> 

    <packaging.type>bundle</packaging.type> 

   </properties> 

    <build> 

       <plugins> 

 <plugin> 

     <groupId>org.apache.felix</groupId> 

     <artifactId>maven-bundle-plugin</artifactId> 

     <version>2.2.0-SNAPSHOT</version> 

    <extensions>true</extensions> 

  <configuration> 

      <instructions> 

   <Bundle-SymbolicName>${artifactId}</Bundle-SymbolicName> 

   <Bundle-Version>${pom.version}</Bundle-Version> 

   <Export-Package/> 



 

ASSETS Deployed Preservation Services                                Page 51 D2.3.2 V1.0 

     </instructions> 

  </configuration> 

 </plugin> 

 <!-- osgi - ipojo: service activation meta.xml located in src>main>osgi>ipojo --> 

 <plugin> 

  <groupId>org.apache.felix</groupId> 

  <artifactId>maven-ipojo-plugin</artifactId> 

  <version>1.7.0-SNAPSHOT</version> 

  <executions> 

       <execution> 

   <goals> 

   <goal>ipojo-bundle</goal> 

            </goals> 

           <phase>package</phase> 

   configuration>     

 <metadata>src/main/resources/OSGI-INF/ipojo/meta.xml</metadata> 

   </configuration> 

  </execution> 

    </executions> 

              <plugin> 

           </plugins> 

       </build> 

    </profile> 

 </profiles> 

 <dependencies> 

  <dependency> 

   <groupId>junit</groupId> 

   <artifactId>junit</artifactId> 

   <version>4.7</version> 

   <type>jar</type> 

   <scope>test</scope> 

  </dependency> 

  <dependency> 

   <groupId>eu.europeana.assets</groupId> 

   <artifactId>preservation-common-api</artifactId> 



 

ASSETS Deployed Preservation Services                                Page 52 D2.3.2 V1.0 

   <version>0.0.1-SNAPSHOT</version> 

   <type>bundle</type> 

   <scope>compile</scope> 

  </dependency> 

  <dependency> 

   <groupId>eu.europeana.assets</groupId> 

   <artifactId>preservation-planets-common</artifactId> 

   <version>0.0.1-SNAPSHOT</version> 

   <type>bundle</type> 

   <scope>compile</scope> 

  </dependency> 

  <dependency> 

   <groupId>uk.gov.nationalarchives</groupId> 

   <artifactId>droid-core</artifactId> 

   <version>6.0</version> 

   <scope>runtime</scope> 

  </dependency> 

  <dependency> 

   <groupId>uk.gov.nationalarchives</groupId> 

   <artifactId>droid-core-interfaces</artifactId> 

   <version>6.0</version> 

   <scope>runtime</scope> 

  </dependency> 

  <dependency> 

   <groupId>byteseek</groupId> 

   <artifactId>byteseek</artifactId> 

   <version>1.1</version> 

   <scope>runtime</scope> 

  </dependency> 

 </dependencies> 

</project> 

So in this case the different service artefacts have dependencies on the Droid Java API, 

which however is not directly available via a ‘bundle’ packaging mechanism. So therefore we 

have chosen to directly include them as runtime dependencies within the Maven build and 

handle the deployment of dependent artifacts on Karaf on our own by hand using the 

osgi:install in combination with the ‘PAX URL wrap protocol’ for converting jars into OSGi 



 

ASSETS Deployed Preservation Services                                Page 53 D2.3.2 V1.0 

bundles. For example  

osgi:install -s wrap:mvn:uk.gov.nationalarchives/droid-core-interfaces/6.0 

An example on how to actually combine the PAX URL wrap protocol within the Karaf feature 

deployment mechanism is given here  

As described earlier, on the basic atomic preservation services are pure Java classes with 

some annotations, which get picked up by the system. To make this possible you need to 

specify the property configuration within the iPojo meta.xml.  

<instance component=" eu.planets_project.ifr.core.services.identification.droid.impl.Droid 

"> 

      <property name="osgi.remote.interfaces" value="*"/> 

      <property name="osgi.remote.configuration.type" value="org.apache.cxf.ws" /> 

      <property name="osgi.remote.configuration.pojo.address" 

value="http://localhost:8080/assets-preservation-services-droid" /> 

</instance> 

So you can either access its functionality on the Java platform without working in a web 

service environment or access them remotely. In the latter case JAX-WS can be used to hide 

the SOAP layer and retrieve a proxy object from a server that will conform to the interface 

(i.e. you will work with an instance of a class that implements the interface, e.g. Migrate:  

URL wsdl = new URL("http://127.0.0.1:8080/assets-preservation-services-

droid/Droid?wsdl"); 

Migrate jtidy = ServiceUtils.createService(Migrate.QNAME, Migrate.class, wsdl);  

To access the services from non-Java platforms, you can either generate stubs from the 

WSDL exposed for the service or directly create SOAP messages conforming to the web 

service schemas (for service descriptions, digital objects, etc).  

• Frequently asked questions 

If you want to directly use distributed OSGi on the client side to integrate the services 

transparently you only have to provide a service-services.xml within the \resources\OSGI-

INF\remote-service  

<service-descriptions xmlns="http://www.osgi.org/xmlns/sd/v1.0.0"> 

  <service-description> 

    <provide interface="org.apache.felix.ipojo.SampleService" /> 

    <property name="service.exported.interfaces">*</property> 

    <property name="service.exported.configs">org.apache.cxf.ws</property> 

    <property 

name="org.apache.cxf.ws.address">http://localhost:9090/SampleServiceInstanceEndpoint<

/property> 

  </service-description> 

</service-descriptions> 

Is it possible to register external / custom 3rd party jars that a given artefact has 



 

ASSETS Deployed Preservation Services                                Page 54 D2.3.2 V1.0 

dependencies upon into the Maven repository so that it can be referenced by for example 

Karaf-features.  

 <plugin> 

                               <groupId>org.apache.maven.plugins</groupId> 

                                <artifactId>maven-install-plugin</artifactId> 

                                <version>2.3.1</version> 

                                <executions> 

                                        <execution> 

                                                <phase>generate-sources</phase> 

                                                <configuration> 

                                                        <groupId>preservation-planets-services</groupId> 

                                                        <artifactId>jtidy-3rdpartyjar </artifactId> 

                                                        <file>${basedir}/lib/Tidy.jar</file> 

                                                        <version>1</version> 

                                                        <packaging>jar</packaging> 

                                                </configuration> 

                                                <goals> 

                                                        <goal>install-file</goal> 

                                                </goals> 

                                        </execution> 

                                </executions> 

                        </plugin> 

How is it possible to attach arbitrary artifacts to the different stages of the Maven build 

process? In the provided sample following fragment adds the Karaf feature descriptor using 

the org.codehaus.mojo build-helper-maven-plugins attach-artefact goal.  

<plugin> 

                                <groupId>org.codehaus.mojo</groupId> 

                                <artifactId>build-helper-maven-plugin</artifactId> 

                                <version>1.5</version> 

                                <executions> 

                                        <execution> 

                                                <id>attach-artifacts</id> 

                                                <phase>package</phase> 

                                                <goals> 

                                                        <goal>attach-artifact</goal> 



 

ASSETS Deployed Preservation Services                                Page 55 D2.3.2 V1.0 

                                                </goals> 

                                                <configuration> 

                                                        <artifacts> 

                                                                <artifact> 

                                                                        <file>target/features/jtidy-osgi-karaf-

features.xml</file> 

                                                                        <type>xml</type> 

                                                                        <classifier>features</classifier> 

                                                                </artifact> 

                                                        </artifacts> 

                                                </configuration> 

                                        </execution> 

                                </executions> 

                        </plugin> 

Within the plugin’s configuration section the attached artifacts are retrieved from the target 

folder of the build. By default Maven copies resources into the target/class folder. In order 

to keep these files out of the bundle and off the classpath when creating the feature 

descriptor as part of the bundle module, and additional execution of the maven resources 

plugin is configured.  

 <plugin> 

                                <groupId>org.apache.maven.plugins</groupId> 

                                <artifactId>maven-resources-plugin</artifactId> 

                                <version>2.4.3</version> 

                                <executions> 

                                        <execution> 

                                                <id>copy-features</id> 

                                                <phase>generate-resources</phase> 

                                                <goals> 

                                                        <goal>copy-resources</goal> 

                                                </goals> 

                                                <configuration> 

                                                        <outputDirectory>target/features</outputDirectory> 

                                                        <resources> 

                                                                <resource> 

                                                                        <directory>etc/karaf-features</directory> 

                                                                        <filtering>true</filtering> 



 

ASSETS Deployed Preservation Services                                Page 56 D2.3.2 V1.0 

                                                                </resource> 

                                                        </resources> 

                                                </configuration> 

                                        </execution> 

                                </executions> 

                        </plugin> 

                </plugins> 

        </build> 

  

• Eclipse remote debugging with Karaf  

This short tutorial has proven very useful and depicts how to startup Apache Karaf in debug 

mode and hook up with Eclipse for remotely debugging the application? The easiest way to 

debug Karaf or any application deployed onto it is to use remote debugging. Remote 

debugging can be easily activated by setting the KARAF_DEBUG environment variable to 

true and can be done using the following command on Unix systems:  

export KARAF_DEBUG=true 

On Windows, use the following command (on the cmd shell)  

set KARAF_DEBUG=true 

Then, you can launch Karaf using the usual way:  

bin/karaf 

or  

bin\karaf.bat 

Inside the Eclipse IDE connect to the remote application (the default port to connect to is 

5005). This is done the following way: • Start Eclipse • Go to Run -> Debug Configurations • 

Create a new Remote Java Application configuration • Configure the remote application's 

details  

 

 



 

ASSETS Deployed Preservation Services                                Page 57 D2.3.2 V1.0 

4. T2.3.2 Preservation Notification 

4.1 Introduction  

Preservation Notification is one of the digital preservation services, which guarantees the 

adequate communication and management procedures in reaction to events that could 

impact long term preservation within a digital archive.  

As actions, appropriate messages are dispatched according to event types, well defined 

rules, roles of the entities involved in the digital environment (i.e. curator, preserver, 

holder).  

The alerted entity (i.e. human actor and/or automatic tool) is able to enact corrective 

actions according to established preservation plans. 

4.2 Business scenarios for Notification 

The Preservation Notification service is part of the ASSETS Digital Preservation services suite 

and provides a means to inform user communities that digital content is being managed 

(amended/added/deleted/archived) and is available/unavailable for use. 

Changes and events are represented/reported by terms (TOPICS OF INTEREST) which are 

classified in a hierarchical structure (e.g. a TAXONOMY). 

Data curators (SUBSCRIBERS) express their interest for receiving notification (ALERTS) for 

specific changes/events based on their own capabilities and skills. 

Notification of change/impacting events are filtered by adopting rules and classifications. 

And this allows generating informational/warning alerts for delivering/exchanging 

knowledge to interested actors (which can then properly react). 

4.3 Technical Documentation for Notification 

4.3.1 UML diagrams 

The service has been identified and preliminary described in [D2.0.4] as provider of common 

functionality for the Preservation Notification Service (outcome of the Task 2.3.3) and the 

Taxonomy-based Notification Service (outcome of the Task 3.2.3). 

In particular, the service supports: 

1. Message Management – management of the notification messages (i.e. creation, 

publishing, deliverying); 

2. Subscription Management – management of the subscribers and their topics of 

interest for receiving alerts; 

3. Taxonomy Management – management of the taxonomies which contain the terms 

used by the publishers and subscribers for describing events, objects and topics of 

interest. 



 

ASSETS Deployed Preservation Services                                Page 58 D2.3.2 V1.0 

In this perspective, the Notification core is represented by three interfaces: i) 

NotificationManager, ii) RegistrationManager and iii) TaxonomyManager. These interfaces 

manage the concepts modelled in the pictures below. 

 

Figure 14 - Preservation Notification: domain models 

 

 

Figure 15 - Preservation Notification: service interfaces 

 

4.3.2 REST services 

The available notification service methods are remotely accessible through the associated 

REST interface using the restURL (http://<server.url>/assets/preservation-notification/rest) 

as a root service link, where <server.url> can either be: 

� http://assetstest.atc.gr (test server) 

� http://assetsdemo.atc.gr (“production” server) 



 

ASSETS Deployed Preservation Services                                Page 59 D2.3.2 V1.0 

-------------------------------------------------------------------------------------------------------------------------- 

Figure 16 shows a table with the available notification services related to managing external 

services and taxonomies. 

 

Figure 16 - Available notification services related to managing external services and 

taxonomies 

 

The specifications for the above displayed services are listed in the following table: 

Method Response 

type 

Name Input 

Parameters 

Function 

POST XML /registrationManager/createService XML Registers a 

service under 

which 

subscriptions 

and notification 

channels may 

be created. 

POST XML /taxonomyManager/createTaxonomy XML Creates and 

loads a 

taxonomy (for a 

specific 



 

ASSETS Deployed Preservation Services                                Page 60 D2.3.2 V1.0 

service). 

GET XML /taxonomyManager/listTaxonomies @serviceId, id 

of the service 

for which a list 

of pre-loaded 

taxonomies 

will be 

retrieved. 

Lists existing 

taxonomies 

related to a 

specific service. 

GET XML /taxonomyManager/getPartOfTaxonomy @termId, id of 

a term of a 

specific 

taxonomy for 

which its 

descendants 

will be 

retrieved. 

@taxonomyId, 

id of a 

taxonomy 

Lists a part (a 

term and its 

descendants) of 

a specific 

taxonomy. 

 

Figure 17 shows a table with the available notification services related to managing 

subscribers and subscriptions. 

 

Figure 17 - Available notification services related to managing subscribers and 

subscriptions 

 

The specifications for the above displayed services are listed in the following table: 

Method Response 

type 

Name Input 

Parameters 

Function 



 

ASSETS Deployed Preservation Services                                Page 61 D2.3.2 V1.0 

POST XML /registrationManager/createSubscriber XML Creates a 

subscriber 

POST XML /registrationManager/createSubscription XML Creates a 

Subscription 

for receiving 

messages 

related to 

chosen terms 

of a pre-

loaded 

taxonomy (e.g. 

ASSETS, SKOS) 

GET XML /registrationManager/getAllSubscribers  Returns an 

XML file listing 

all the 

subscribers. 

GET XML /registrationManager/getAllSubscribers @serviceId, id 

of the service 

for which a list 

of registered 

subscribers will 

be retrieved. 

Returns an 

XML file listing 

all the 

subscribers 

related to a 

specific 

service. 

GET XML /registrationManager/getAllSubscriptions @serviceId, id 

of the service 

for which a list 

of 

subscriptions 

(registered by 

a specific 

subscriber) will 

be retrieved. 

@subscriberId, 

id of the 

subsciber for 

which a list of 

his/her own 

subscriptions 

will be 

retrieved. 

Returns an 

XML file with 

the details of 

all the 

subscriptions 

related to a 

particular 

service which 

have been 

created by a 

specific 

subscriber. 

POST XML /registrationManager/updateSubscription XML Amends a 

specific 

subscription. 

POST XML /registrationManager/deleteSubscription XML Deletes a 

specific 

subscription. 

 

Figure 18 shows a table with the available notification services related to managing 

publishers, creating notification channels and publishing messages. 



 

ASSETS Deployed Preservation Services                                Page 62 D2.3.2 V1.0 

 

Figure 18 - Available notification services related to managing publishers, creating 

notification channels and publishing messages 

 

The specifications for the above displayed services are listed in the following table: 

Method Response 

type 

Name Input 

Parameters 

Function 

POST -XML /registrationMa

nager/createPu

blisher 

XML Creates a publisher. 

POST -XML /notificationMa

nager/createM

essage 

XML Creates a Notification channel where to 

publish messages whose content is 

related to chosen terms of a pre-loaded 

taxonomy (e.g. ASSETS, SKOS). 

POST -XML /notificationMa

nager/publishM

essage 

XML Publishes a message on an existing 

Notification channel. 

 

Figure 19 shows a table with the available notification services related to managing the 



 

ASSETS Deployed Preservation Services                                Page 63 D2.3.2 V1.0 

delivery of messages. 

 

Figure 19 - Available notification services related to managing the delivery of messages. 

 

The specifications for the above displayed services are listed in the following table: 

Method Response 

type 

Name Input 

Parameters 

Function 

POST XML /notificationMa

nager/deliverM

essages 

XML Delivers all the messages for a given 

subscription (according to the chosen 

delivery rule, "AND", "OR", "EXACT"). 

POST XML /notificationMa

nager/deliverM

essages4Term 

XML Delivers all the messages published 

under a given term/topic of interest (all 

subscribers who have subscribed to that 

term/topic of interest will receive alerts). 

 

4.3.3 Preservation Notification : Client APIs 

The main APIs for the Preservation Notification service are the following:  

1. TAXONOMY MANAGER API 

API TaxonomyManager 

Responsibility This interface deals with registration and management of taxonomies. 

Provided 

methods 

public Taxonomy createTaxonomy(Identifier serviceId, TaxonomyInfo 

taxonomyInfo, Taxonomy taxonomy) throws Exception;  

allows a specific service to create and register a taxonomy by providing the 

fundamental information: the taxonomy and its information 

@param serviceId  the identifier of the service invoking the 



 

ASSETS Deployed Preservation Services                                Page 64 D2.3.2 V1.0 

creation method. This service is the owner of the taxonomy. 

@param taxonomyInfo  the information of the taxonomy (title, 

description). 

@param taxonomy  the taxonomy as set of terms (with 

broaders/parents and narrowers/childs). 

@return    the taxonomy created and registered with 

an identifier (taxonomyId) 

 

public List<TaxonomyInfo> listTaxonomies(Identifier serviceId); 

allows to obtain the information of all the registered taxonomies from a 

specific service 

@param serviceId  the identifier of the service 

@return   a list of all the taxonomies registered by a 

specific service 

 

public Taxonomy getPartOfTaxonomy(Identifier termId, Identifier 

taxonomyId); 

allows to obtain a part of a taxonomy, starting from a specific term. 

@param termId  the identifier of the term 

@param taxonomyId  the identifier of the taxonomy 

@return   (part of) a taxonomy 

 

public boolean replaceTaxonomy(Identifier taxonomyId, Taxonomy 

newTaxonomy); 

allows to replace an existing taxonomy with a new one 

@param taxonomyId  the identifier of the taxonomy being 

replaced. 

@param newTaxonomy the new taxonomy used for replacing the 

old one. 

@return   true, if the replacement occurred 

successfully; otherwise false. 

 

public boolean deleteTaxonomy(Identifier taxonomyId); 

allows to remove an existing taxonomy 

@param taxonomyId  the identifier of the taxonomy to be 

removed. 

@return   true if the deletion occurred successfully, 

otherwise false. 



 

ASSETS Deployed Preservation Services                                Page 65 D2.3.2 V1.0 

Dependencies ASSETS Common 

 

 

2. REGISTRATIONMANAGER API 

API RegistrationManager 

Responsibility This interface deals with the registration of subscriptions and subscribers 

involved in the notification process. 

Provided 

methods 

public Service createService(Identifier id, String label) throws Exception; 

allows to register a Service with specified id and label. 

 If id == null, it will be generated. 

If a Service with provided id already exists, it will be returned.  

@param id  the Identifier of the Service to be created, or null 

if a new one should be generated. 

@param label  the name of the Service to be created. 

@return  the created Service (or the existing one).  

 

public Subscriber createSubscriber(Identifier id, String label) throws 

Exception; 

allows to register a Subscriber with a specified id and a label (subscriber’s 

name). 

If id == null, it will be generated. 

If a Subscriber with the provided id already exists, it will be returned 

@param id  the Identifier of the Subscriber to be created, or 

null if a new one should be generated. 

@param label  the label (name) of the Subscriber to be created. 

@return  the created Subscriber (or the existing one). 

 

public Publisher createPublisher(Identifier id, String label) throws 

Exception;  

allows to register a Publisher with a specified id and a label (publisher’s 

name). 

If id == null, it will be generated. 

If a Publisher with the provided id already exists, it will be returned 

@param id  the Identifier of the Publisher to be created, or 

null if a new one should be generated. 

@param label  the label (name) of the Publisher to be created. 

@return  the created Publisher (or the existing one). 



 

ASSETS Deployed Preservation Services                                Page 66 D2.3.2 V1.0 

 

public Subscription createSubscription(Identifier serviceId, Subscriber 

subscriber, Collection<Term> terms) throws Exception ;  

allows to register a subscription for a specific subscriber and to specify the 

set of terms of interest for receiving alerts. The operation returns an 

identifier for the registered subscription.  

@param serviceId the identifier of the service invoking the creation 

of a subscription. 

@param subscriber the subscriber who is interested to specific terms. 

@param terms  the terms of interest for which to receive 

notifications 

@return  the subscription to the specified terms of interest.  

 

public Subscription updateSubscription(Identifier serviceId, Identifier 

subscriptionId, Collection<Term> terms) throws Exception; 

allows to update the information of a registered subscription. 

@param serviceId  the identifier of the service invoking the 

update of a subscription. 

@param subscriptionId  the identifier of the being updated 

subscription. 

@param terms   the new terms replacing the old ones in 

the being updated subscription. 

@return   the updated subscription. 

 

public void deleteSubscription(Identifier subscriptionId) throws 

Exception; 

allows to remove the registration of a specific subscription. 

@param subscriptionId  the identifier of the subscription to be 

removed. 

@return   true if the deletion is successfully 

completed, otherwise false. 

 

public List<Subscription> getAllSubscriptions(Identifier serviceId, 

Identifier subscriberId); 

allows to obtain all the subscriptions registered under a service by a 

specific subscriber. 

@param serviceId  the identifier of the service. 

@param subscriberId  the identifier of the subscriber. 

@return   the list of all the subscriptions. 



 

ASSETS Deployed Preservation Services                                Page 67 D2.3.2 V1.0 

 

public List<Subscriber> getAllSubscribers(Identifier serviceId); 

allows to obtain all the subscribers (whose subscription have been 

registered) under a specific service 

@param serviceId  the identifier of the service. 

@return   the list of all subscribers' identifiers. 

Dependencies ASSETS Common 

 

3. NOTIFICATIONMANAGER API 

API NotificationManager 

Responsibility This interface manages the messages and their lifecycle. The message is 

created and published by a publisher. Finally it is delivered to the 

interested subscribers. 

Provided 

methods 

public Notification createMessage(Identifier serviceId, Publisher 

publisher, Collection<Term> terms) throws Exception; 

allows to create a notification message for a set of topics of interest 

representing events and/or objects. It has a MessageHeader, 

MessageProperties and a MessageBody. A notification message may be 

addressed for more than one topic. 

@param serviceId the identifier of the service from which the 

method is invoked. 

@param publisher who is going to publish a message. 

@param terms  the topics for which the message is going to be 

published. 

@return  the notification message. 

 

public void publishMessage(Notification notification) throws Exception; 

allows a publisher to submit and publish a notification message for a set of 

topics. This notification is previously created byusing the createMessage  

operation. 

@param notification  The message which has to be published. 

 

public List<Alert> deliverMessages(Identifier serviceId, Identifier 

subscriptionId, FilteringRule filterRule, int indexFrom, int maxBunch, 

MessagePolicyAge policyAge); 

allows a subscriber to receive a bunch of alert messages for a specific 

subscription of a service, according to the expressed message policy (e.g. if 

the message has been posted before the subscription) and the filtering rule 

(e.g. AND, OR); 



 

ASSETS Deployed Preservation Services                                Page 68 D2.3.2 V1.0 

@param serviceId  the identifier of the service invoking the 

delivery. 

@param subscriptionId  the identifier of the subscription for a set 

of terms.  

@param filterRule  filter the messages by applying AND or 

OR. 

@param indexFrom  index from which the alerts have to be 

returned. 

@param maxBunch  max size of the returned alerts. 

@param policyAge  specifies the age policy of delivered alerts. 

 

public List <Alert> deliverMessages4Term(Identifier serviceId, Term 

term, int indexFrom, int maxBunch, MessagePolicyAge policyAge); 

allows to receive a bunch of alert messages for a specific term of interest, 

according to the expressed message policy. The messages refer to the 

exact matching for the term, and not for its childs. 

@param serviceId  the identifier of the service invoking the 

delivery. 

@param term   the term of interest contained in the 

notification. 

@param indexFrom  index from which the alerts have to be 

returned. 

@param maxBunch  max size of returned alters. 

@param policyAge  specifies the age policy of delivered alerts. 

 

public MessageStatus getMessageStatus(Identifier alertId, Identifier 

subscriberId); 

allows to obtain the status (i.e. read or unread) of a specific alert message. 

@param alertId  the alert message identifier. 

@param subscriberId  the subscriber identifier. 

 

public void markAlertAsRead(Identifier alertId, Identifier subscriberId) 

throws Exception; 

allows to set the status of a specific alert message as read. 

@param alertId  the alert message identifier. 

@param subscriberId  the subscriber identifier. 

Dependencies ASSETS Common 

 



 

ASSETS Deployed Preservation Services                                Page 69 D2.3.2 V1.0 

These above displayed APIs can be remotely invoked by a client application using classes 

TaxonomyManagerImpl, RegistrationManagerImpl, NotificationManagerImpl) by using the 

restURL (Errore. Riferimento a collegamento ipertestuale non valido. as main argument 

during instantiation:  

TaxonomyManagerImpl tm = new TaxonomyManagerImpl(restURL); 

..................................................................................... 

NotificationManagerImpl nm = new NotificationManagerImpl(restURL); 

..................................................................................... 

..................................................................................... 

RegistrationManagerImpl rm = new RegistrationManagerImpl(restURL); 

..................................................................................... 

 

4.3.4 Software packaging 

For the Preservation Notification service, there are two modules on the ASSETS continuous 

integration environment (HUDSON) which ordinately represent client-side classes and 

server-side services.  

The artifacts for the Preservation Notification are available on the Europeana SVN  

(http://europeanalabs.eu/svn/assets/builds/). 

The above mentioned modules that can be found on the continuous integration system are.  

• "preservation-notification-client", including artifacts for client-side classes to be 

used to access server-side services:  

o Preservation Notification Client artifacts: preservation-notification-client-

0.0.1-SNAPSHOT.jar  

o Preservation Notification Client Javadoc artifacts: preservation-notification-

client-0.0.1-SNAPSHOT-javadoc.jar  

• "preservation-notification", including artifacts for server-side classes implementing 

the services core:  

o Preservation Notification Service supporting classes artifacts: preservation-

notification-0.0.1-SNAPSHOT-classes.jar  

o Preservation Notification Service Javadoc artifacts: preservation-

notification-0.0.1-SNAPSHOT-javadoc.jar  

o Preservation Notification Service artifacts: preservation-notification-0.0.1-

SNAPSHOT.war  

 

4.3.5 Installation and configuration 

The information contained in this section is publicly available on 

http://assetsdev.atc.gr/trac/wiki/preservation-notification-deployment. 



 

ASSETS Deployed Preservation Services                                Page 70 D2.3.2 V1.0 

The Preservation Notification is based on the following data source: 

• a PostgreSQL Database instance - which is used for the persistence of messages, 

notifications, subscribers, subscriptions and taxonomies of topics. 

The following three steps have to be followed in order to configure the persistence layer 

needed for the service to work correctly. 

• STEP 1: from either the web interface or at command line, create a role with no 

privileges, 

user: <notification_user> 
password: <notification_pwd> 

 

• STEP 2: create a database instance on PostgreSQL (e.g. named "notification_db") and 

assign its ownership to the role already created in the step 1, 

db name: <notification_db> 
db owner: <notification_user> 
encoding: UTF8 

 

As an alternative, you might use the following SQL script to execute both STEP1 and STEP2 

CREATE ROLE notification_user LOGIN PASSWORD 'notif ication_pwd' 
NOSUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE; 
 
CREATE DATABASE notification_db WITH OWNER = notifi cation_user 
ENCODING = 'UTF8'; 

 

• STEP 3: configure the persistence.xml (that can be found at 

assets\services\preservation-notification\src\main\resources\META-

INF\persistence.xml) as follows. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<persistence version="2.0" 
xmlns="http://java.sun.com/xml/ns/persistence" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e" 
xsi:schemaLocation="http://java.sun.com/xml/ns/pers istence 
http://java.sun.com/xml/ns/persistence/persistence_ 2_0.xsd"> 
  <persistence-unit name="preservation-notification PU" transaction-
type="RESOURCE_LOCAL"> 
    <provider>org.hibernate.ejb.HibernatePersistenc e</provider> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tme
ssage</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tno
tification</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tpu
blisher</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tse
qguid</class> 



 

ASSETS Deployed Preservation Services                                Page 71 D2.3.2 V1.0 

    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tse
rvice</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tsu
bscriber</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tsu
bscription</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tta
xonomy</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tte
rm</class> 
    
<class>eu.europeana.assets.service.preservation.not ification.dao.Tre
adby</class> 
    <properties> 
      <property name="hibernate.connection.username " 
value="notification_user"/> 
      <property name="hibernate.connection.driver_c lass" 
value="org.postgresql.Driver"/> 
      <property name="hibernate.connection.password " 
value="notification_pwd"/> 
      <property name="hibernate.connection.url" 
value="jdbc:postgresql://localhost:5432/notificatio n_db"/> 
      <property name="hibernate.hbm2ddl.auto" value ="update"/> 
    </properties> 
  </persistence-unit> 
</persistence> 

 

For detailed information please refer to the Setup_and_Installation_Guidelines.pdf which is 

part of the source code subversion repository of the project. 

 

4.4 User/Developer Manual for Notification 

A guide on how to use the server-side service will be detailed in the next paragraphs. 

Regarding the user interface, a short user manual will be provided. 

4.4.1 USER MANUAL (how to use notification service home page, index.html) 

The available notification service methods are displayed in the notification service home 

page: 

http://<server.url>/assets/preservation-notification/index.html 

where <server.url> can either be: 

� http://assetstest.atc.gr (test server) 

� http://assetsdemo.atc.gr (“production” server) 

 

Please refer to Figure 16, Figure 17, Figure 18 and Figure 19 for a series of screenshots of 



 

ASSETS Deployed Preservation Services                                Page 72 D2.3.2 V1.0 

the above mentioned service home page. 

For details about all the operations that can be performed on this page (representing a way 

of using the notification service REST URLs), please refer to chapter 3 “The Preservation 

Notification Test Scenario (for CONTENT PROVIDERS)” in [NOTIFICATION TEST SCENARIO]. 

4.4.2 DEVELOPER MANUAL 

This section is going to show some short JAVA code snippets taken from the notification test 

classes that will allow a developer to quickly understand how objects can be instantiated 

from the service classes. 

2.4.2.1 Creating an external client service to access the server-side notification service 

The server-side "notification service" has been conceived in order to make available its 

features to external client services. Each client service could have different taxonomies, 

subscribers and subscriptions.  

So, it is necessary to instantiate a “client service” (or to have available a “client service” 

identifier). This is accomplished by using the method createService (through an instance of 

the RegistrationManager class) which input parameters are (Identifier serviceId, String 

serviceLabel).  

RegistrationManager rm = new RegistrationManagerImpl(); 

Service s = rm.createService(new Identifier(serviceID), serviceLabel); 

 

2.4.2.2 Creating a taxonomy  

In order to create a taxonomy object, we have to access methods from a taxonomyManager 

object. These methods will be accessible either through a local instance of the 

TaxonomyManager class (if a service client is available)  

TaxonomyManager tm = new TaxonomyManagerImpl(); 

or through a remote REST invocation of the TaxonomyManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

TaxonomyManagerImpl tm = new TaxonomyManagerImpl(restURL); 

We will then use the createTaxonomy method which input parameters are (Identifier 

serviceid, TaxonomyInfo ti, Taxonomy taxo).  

TaxonomyInfo ti = new TaxonomyInfo(title, descr, owner, 1); 

         

Taxonomy taxo = new Taxonomy(); 

taxo.addTerm("Programming", null);   

taxo.addTerm("Theory", "Programming"); 

taxo.addTerm("Languages","Programming"); 

taxo.addTerm("Algorithms","Programming"); 

taxo.addTerm("OOL","Languages"); 



 

ASSETS Deployed Preservation Services                                Page 73 D2.3.2 V1.0 

taxo.addTerm("Sort","Algorithms"); 

taxo.addTerm("C++","OOL"); 

taxo.addTerm("Java","OOL"); 

taxo.addTerm("MergeSort","Sort"); 

taxo.addTerm("BubbleSort","Sort"); 

taxo.addTerm("QuickSort","Sort"); 

taxo.addTerm("JSP","Java"); 

taxo.addTerm("JavaBean","Java");     

       

Taxonomy tax = tm.createTaxonomy(new Identifier(serviceID), ti, taxo); 

2.4.2.3 Creating a publisher  

In order to create a publisher object, we have to access methods from a 

registrationManager object. These methods will be accessible either through a local 

instance of the RegistrationManager class (if a service client is available)  

RegistrationManager rm = new RegistrationManagerImpl(); 

or through a remote REST invocation of the RegistrationManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

RegistrationManagerImpl rm = new RegistrationManagerImpl(restURL); 

We will then use the method createPublisher which input parameters are (Identifier 

publisherId, String publisherLabel).  

Publisher p = rm.createPublisher(new Identifier(pID), pLabel); 

2.4.2.4 Creating a notification (for given terms of a taxonomy)  

In order to create a notification object, we have to access methods from a 

notificationManager object. These methods will be accessible either through a local instance 

of the NotificationManager class (if a service client is available)  

NotificationManager nm = new NotificationManagerImpl(); 

or through a remote REST invocation of the NotificationManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

NotificationManager nm = new NotificationManagerImpl(restURL); 

We will then use the method createMessage which input parameters are (Identifier 

serviceid, Publisher p, ArrayList<Term> terms).  

ArrayList<Term> terms = new ArrayList<Term>(); 

terms.add(new Term(new Identifier("term1"))); 

terms.add(new Term(new Identifier("term2"))); 

............................................. 



 

ASSETS Deployed Preservation Services                                Page 74 D2.3.2 V1.0 

............................................. 

terms.add(new Term(new Identifier("termN"))); 

 

Publisher p = new Publisher(); 

p.setPublisherId(new Identifier(pID)); 

Notification n = nm.createMessage(new Identifier(serviceID), p, terms); 

2.4.2.5 Creating a subscriber  

In order to create a subscriber object, we have to access methods from a 

registrationManager object. These methods will be accessible either through a local 

instance of the RegistrationManager class (if a service client is available)  

RegistrationManager rm = new RegistrationManagerImpl(); 

or through a remote REST invocation of the RegistrationManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

RegistrationManagerImpl rm = new RegistrationManagerImpl(restURL); 

We will then use the method createSubscriber which input parameters are (Identifier 

subscriberId, String subscriberLabel).  

Subscriber p = rm.createSubscriber(new Identifier(sID), sLabel); 

2.4.2.6 Registering a subscription  

In order to register a subscription, thus meaning to create a subscription object, we have to 

access methods from a registrationManager object. These methods will be accessible either 

through a local instance of the RegistrationManager class (if a service client is available)  

RegistrationManager rm = new RegistrationManagerImpl(); 

or through a remote REST invocation of the RegistrationManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

RegistrationManagerImpl rm = new RegistrationManagerImpl(restURL); 

We will then use the method createSubscription which input parameters are (Identifier 

serviceId, Subscriber s, ArrayList<Term> terms).  

ArrayList<Term> terms = new ArrayList<Term>(); 

terms.add(new Term(new Identifier("term1"))); 

terms.add(new Term(new Identifier("term2"))); 

............................................. 

............................................. 

terms.add(new Term(new Identifier("termN"))); 

 

Subscriber s = new Subscriber(); 



 

ASSETS Deployed Preservation Services                                Page 75 D2.3.2 V1.0 

s.setSubscriberId(new Identifier(sID)); 

Subscription n = rm.createSubscription(new Identifier(serviceID), s, terms); 

2.4.2.7 Publishing messages (on a notification channel)  

In order to publish a message on a notification object, we have to access methods from a 

notificationManager object. These methods will be accessible either through a local instance 

of the NotificationManager class (if a service client is available)  

NotificationManager nm = new NotificationManagerImpl(); 

or through a remote REST invokation of the NotificationManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

NotificationManager nm = new NotificationManagerImpl(restURL); 

We will then use the method publishMessage whose input parameter is (Notification n).  

Notification n = new Notification(new Identifier(nID)); 

n.setMsgURI(msgURI); 

n.setMsgTitle(msgTitle); 

n.setMsgSummary(msgSummary); 

nm.publishMessage(n); 

2.4.2.8 Delivering messages/alerts (filtering rules)  

In order to deliver messages on a notification object, we have to access methods from a 

notificationManager object. These methods will be accessible either through a local instance 

of the NotificationManager class (if a service client is available)  

NotificationManager nm = new NotificationManagerImpl(); 

or through a remote REST invokation of the RegistrationManagerImpl interface:  

String restURL = 'http://<server.url>/assets/preservation-notification/rest'; 

NotificationManager nm = new NotificationManagerImpl(restURL); 

Delivering messages (alerts) to subscribers will then be accomplished by using the method 

deliverMessages whose input parameter are (Identifier serviceId, Identifier SubscriptionId, 

String filteringRule, int indexFrom, int maxBunch, MessagePolicyAge policyAge) where  

• @param indexFrom index from which the alerts have to be returned.  

• @param maxBunch max size of returned alters.  

• @param policyAge specifies the age policy of delivered alerts.  

List<Alert> la = nm.deliverMessages(new Identifier(serviceID), new Identifier(sID), fr, -1, -1, 

null); 

 



 

ASSETS Deployed Preservation Services                                Page 76 D2.3.2 V1.0 

5. Concluding Remarks  

In this deliverable we have described the ASSETS services for the Digital Preservation, 

implemented and tested in ASSETS WP2.3.  

 

The technical aspects of the following components have been explained in detail:  

� Risk management service,  

� Preservation Normalization service,  

� Preservation Notification service. 

 

The software requirements, the technical documentation (UML diagrams, services 

description and API documentation, the software packaging and installation), and the user 

manual have been provided for each service in order to allow developers to understand how 

to use these services, and to know the steps to follow during their installation and 

configuration process. 

 



 

ASSETS Deployed Preservation Services                                Page 77 D2.3.2 V1.0 

6. References 

[D2.0.4] Deliverable 2.0.4 “The ASSETS APIs” – delivered by ASSETS in March 2011 

[Notification JavaDoc] Notification JavaDoc - available on 

http://assetsdemo.atc.gr/content/assets-javadocs/preservation-notification/ 

[NOTIFICATION TEST SCENARIO] the TEST SCENARIO for “DIGITAL PRESERVATION 

NOTIFICATION SERVICE” available on the project’s WIKI at the following URL: 

http://62.101.90.79/c/document_library/get_file?p_l_id=11549&folderId=65911&name=DL

FE-3113.pdf 

 

 


